

Cardamom Planters’ Association College
(Re-accredited with ‘B’ Grade by NAAC)

Pankajam Nagar, Bodinayakanur – 625513

Department CS & IT

TOPIC NAME: PYTHON – LIST, TUPLES, DICTIONARY

(2024-2025)

Prepared by

S.Rohini

Assistant Professor

Department of CS & IT

CPA College

Bodinayakanur

1. ELEMENTARY DATA ITEMS

In python, elementary data items (also known as primitive data types) are the basic building

blocks of data. These include:

Integer: Whole numbers, positive or negative, without decimals.

Floating-point numbers (float): Numbers that contain a decimal point.

Strings (str): A sequence of characters enclosed in single or double quotes.

Booleans (bool): Represents one of two values: True or False.

Complex(complex): Number with real and imaginary parts.

Program:

a = 5

print("Type of a: ", type(a))

b = 5.0

print("\nType of b: ", type(b))

c = 2 + 4j

print("\nType of c: ", type(c))

Output:

Type of a: <class 'int'>

Type of b: <class 'float'>

Type of c: <class 'complex'>

Program:

str = 'Computer Science'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:7]) # Prints characters starting from 3rd to 7th

print (str[2:]) # Prints string starting from 3rd character

print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

Output

Computer Science

C

mpute

mputer Science

Computer ScienceComputer Science

Computer ScienceTEST

Program:

x = bool(5)

y=bool(0)

#display x and y:

print(x)

print(y)

#display the data type of x and y:

print(type(x))

print(type(y))

Output:

True

False

<class 'bool'>

<class 'bool'>

2. LIST

To store data of different data types in a sequential manner. There are addresses assigned to

every element of the list, which is called as Index. The index value starts from 0 and goes on

until the last element called the positive index. There is also negative indexing which starts

from -1 enabling you to access elements from the last to first.

Adding Elements

Adding the elements in the list can be achieved using the append(), extend() and insert()

functions.

 The append() function adds all the elements passed to it as a single element.

 The extend() function adds the elements one-by-one into the list.

 The insert() function adds the element passed to the index value and increase the size

of the list too.

Deleting Elements

 To delete elements, use the del keyword which is built-in into Python but this does not

return anything back to us.

 If you want the element back, you use the pop() function which takes the index value.

 To remove an element by its value, you use the remove() function.

Accessing Elements

Accessing elements is the same as accessing Strings in Python. You pass the index values and

hence can obtain the values as needed.

Other Functions

You have several other functions that can be used when working with lists.

 The len() function returns to us the length of the list.

 The index() function finds the index value of value passed where it has been

encountered the first time.

 The count() function finds the count of the value passed to it.

 The sorted() and sort() functions do the same thing, that is to sort the values of the list.

The sorted() has a return type whereas the sort() modifies the original list.

Sample Program

m= [1, 2, 3, 'example', 3.132] #creating list with data

print(m)

m= [1, 2, 3]

print(m)

print('\n adding element')

m.append([555, 12]) #add as a single element

print(m)

m.extend([234, 'more_example']) #add as different elements

print(m)

m.insert(1, 'insert_example') #add element i

print(m)

m= [1, 2, 3, 'example', 3.132, 10, 30]

print('\n deleting element')

del m[5] #delete element at index 5

print(m)

m.remove('example') #remove element with value

print(m)

a = m.pop(1) #pop element from list

print('Popped Element: ', a, ' List remaining: ', m)

m.clear() #empty the list

print(m)

print('\n accessing element')

a= [1, 2, 3, 'example', 3.132, 10, 30]

for element in a: #access elements one by one

 print(element)

print(a) #access all elements

print(a[3]) #access index 3 element

print(a[0:2]) #access elements from 0 to 1 and exclude 2

print(a[::-1]) #access elements in reverse

print('\n other functions')

b= [1, 2, 3, 10, 30, 10]

print(len(b)) #find length of list

print(b.index(10)) #find index of element that occurs first

print(b.count(10)) #find count of the element

print(sorted(b)) #print sorted list but not change original

b.sort(reverse=True) #sort original list

print(b)

Output

[1, 2, 3, 'example', 3.132]

[1, 2, 3]

 adding element

[1, 2, 3, [555, 12]]

[1, 2, 3, [555, 12], 234, 'more_example']

[1, 'insert_example', 2, 3, [555, 12], 234, 'more_example']

 deleting element

[1, 2, 3, 'example', 3.132, 30]

[1, 2, 3, 3.132, 30]

Popped Element: 2 List remaining: [1, 3, 3.132, 30]

[]

 accessing element

1

2

3

example

3.132

10

30

[1, 2, 3, 'example', 3.132, 10, 30]

example

[1, 2]

[30, 10, 3.132, 'example', 3, 2, 1]

 other functions

6

3

2

[1, 2, 3, 10, 10, 30]

[30, 10, 10, 3, 2, 1]

3. DICTIONARY

To store key-value pairs. To understand better, think of a phone directory where hundreds

and thousands of names and their corresponding numbers have been added. Now the constant

values here are Name and the Phone Numbers which are called as the keys. And the various

names and phone numbers are the values that have been fed to the keys. If you access the

values of the keys, you will obtain all the names and phone numbers. So that is what a key-

value pair is. And in Python, this structure is stored using Dictionaries.

Creating a Dictionary

Dictionaries can be created using the flower braces or using the dict() function. You need to

add the key-value pairs whenever you work with dictionaries.

Changing and Adding key, value pairs

To change the values of the dictionary, you need to do that using the keys. So, you firstly

access the key and then change the value accordingly. To add values, you simply just add

another key-value pair

Deleting key, value pairs

 To delete the values, you use the pop() function which returns the value that has been

deleted.

 To retrieve the key-value pair, you use the popitem() function which returns a tuple of

the key and value.

 To clear the entire dictionary, you use the clear() function.

Accessing Elements

You can access elements using the keys only. You can use either the get() function or just

pass the key values and you will be retrieving the values.

Other Functions

You have different functions which return to us the keys or the values of the key-value pair

accordingly to the keys(), values(), items() functions accordingly.

Sample Program

print("creating dictionary with elements")

s= {1: 'Python', 2: 'Java'}

print(s)

s= {'First': 'Python', 'Second': 'Java'}

print(s)

print("\n changing element")

s['Second'] = 'C++'

print(s)

print("\n adding key-value pair")

s['Third'] = 'Ruby'

print(s)

print("\n pop element")

s= {'First': 'Python', 'Second': 'Java', 'Third': 'Ruby'}

a = s.pop('Third')

print('Value:', a)

print('Dictionary:',s)

print("\n pop the key value pair")

b = s.popitem()

print('Key, value pair:', b)

print(s)

print("\n empty dictionary")

s.clear()

print('n', s)

print("\n access element using keys")

s= {'First': 'Python', 'Second': 'Java'}

print(s['First'])

print(s.get('Second'))

s = {'First': 'Python', 'Second': 'Java', 'Third': 'Ruby'}

print(s.keys()) #get keys

print(s.values()) #get values

print(s.items()) #get key-value pairs

print(s.get('First'))

Output

creating dictionary with elements

{1: 'Python', 2: 'Java'}

{'First': 'Python', 'Second': 'Java'}

changing element

{'First': 'Python', 'Second': 'C++'}

adding key-value pair

{'First': 'Python', 'Second': 'C++', 'Third': 'Ruby'}

pop element

Value: Ruby

Dictionary: {'First': 'Python', 'Second': 'Java'}

pop the key value pair

Key, value pair: ('Second', 'Java')

{'First': 'Python'}

empty dictionary

n {}

access element using keys

Python

Java

dict_keys(['First', 'Second', 'Third'])

dict_values(['Python', 'Java', 'Ruby'])

dict_items([('First', 'Python'), ('Second', 'Java'), ('Third', 'Ruby')])

Python

4. TUPLES

Tuples are the same as lists are with the exception that the data once entered into the tuple

cannot be changed no matter what. The only exception is when the data inside the tuple is

mutable, only then the tuple data can be changed.

Creating a Tuple

You create a tuple using parenthesis or using the tuple() function.

Accessing Elements

Accessing elements is the same as it is for accessing values in lists.

Appending Elements

To append the values, you use the ‘+’ operator which will take another tuple to be appended

to it.

Other Functions

These functions are the same as they are for lists.

Sample Program

t= (1, 2, 3) #create tuple

print(t)

print("\naccess elements")

t= (1, 2, 3, 'edureka')

for x in t:

print(x)

print(t)

print(t[0])

print(t[:])

print(t[3][4])

t= (1, 2, 3)

print("\nadd element")

t= t + (4, 5, 6)

print(t)

t= (1, 2, 3, ['hindi', 'python'])

t[3][0] = 'english' #accesses the first element of that fourth inner list.

print(t)

print(t.count(2))

print(t.index(['english', 'python']))

Output:

(1, 2, 3)

access elements

1

2

3

edureka

(1, 2, 3, 'edureka')

1

(1, 2, 3, 'edureka')

e

add element

(1, 2, 3, 4, 5, 6)

(1, 2, 3, ['english', 'python'])

1

3

