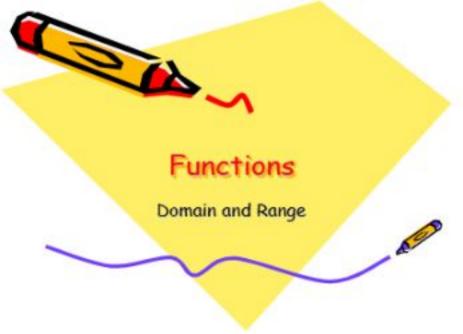
CARDAMOM PLANTERS' ASSOCIATION COLLEGE

Pankajam nagar, Bodinayakanur


DEPARTMENT OF COMPUTER SCIENCE

Subject: Discrete Mathematics-I

Concept: Functions

Prepared by

Mr. M. Murali Raj M.Phil.,

Functions vs. Relations

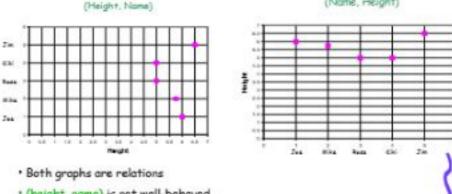
 A "relation" is just a relationship between sets of information.

 A "function" is a well-behaved relation, that is, given a starting point we know exactly where to go.

Example

- People and their heights, i.e. the pairing of names and heights.
- We can think of this relation as ordered pair:
 - (height, name)

· Or


· (name, height)

Example (continued)

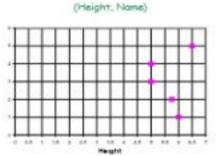
Name	Height
Joe=1	6'=6
Mike=2	5'9"=5.75
Rose=3	5'=5
Kiki=4	5'=5
Jim=5	6'6"=6.5

(Name, Height)

- (height, name) is not well-behaved.
- · Given a height there might be several names corresponding to that height.
- How do you know then where to go?
- For a relation to be a function, there must be exactly one y value that corresponds to a given x value.

Conclusion and Definition

- Not every relation is a function.
- Every function is a relation.
- Definition:


Let X and Y be two nonempty sets.

A function from X into Y is a relation that associates with each element of X exactly one element of Y.

· Recall, the graph of (height, name):

What happens at the height = 5?

Vertical-Line Test

 A set of points in the xy-plane is the graph of a function if and only if every vertical line intersects the graph in at most one point.

Representations of Functions

- Verbally
- Numerically, i.e. by a table
- · Visually, i.e. by a graph
- Algebraically, i.e. by an explicit formula

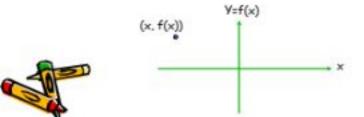
 Ones we have decided on the representation of a function, we ask the following question:

 What are the possible x-values (names of people from our example) and y-values (their corresponding heights) for our function we can have?

 Recall, our example: the pairing of names and heights.

· x=name and y=height

- We can have many names for our x-value, but what about heights?
- For our y-values we should not have 0 feet or 11 feet, since both are impossible.
- Thus, our collection of heights will be greater than 0 and less that 11.



- We should give a name to the collection of possible x-values (names in our example)
- · And
- To the collection of their corresponding y-values (heights).

Everything must have a name @

- Variable x is called independent variable
- Variable y is called dependent variable
- · For convenience, we use f(x) instead of y.
- · The ordered pair in new notation becomes:

Domain and Range

- Suppose, we are given a function from X into Y.
- Recall, for each element x in X there is exactly one corresponding element y=f(x) in Y.
- This element y=f(x) in Y we call the image of x.
- The domain of a function is the set X. That is a collection of all possible x-values.
- The range of a function is the set of all images as x varies throughout the domain.

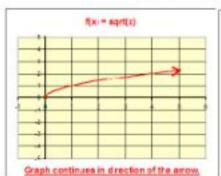
Our Example

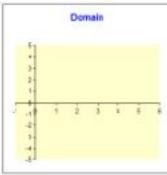
- Domain = {Joe, Mike, Rose, Kiki, Jim}
- Range = {6, 5.75, 5, 6.5}

More Examples

· Consider the following relation:

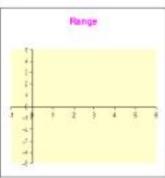
$$f(x) = \sqrt{x}$$


- Is this a function?
- What is domain and range?



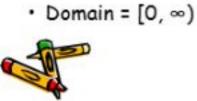
Visualizing domain of

$$f(x) = \sqrt{x}$$



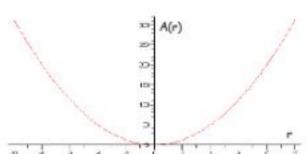
Visualizing range of

$$f(x) = \sqrt{x}$$

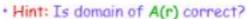


$$f(x) = \sqrt{x}$$

Range = $[0, \infty)$


More Functions

- Consider a familiar function.
- · Area of a circle:


- · What kind of function is this?
- Let's see what happens if we graph A(r).

Graph of $A(r) = \pi r^2$

 Is this a correct representation of the function for the area of a circle???????

Closer look at $A(r) = \pi r^2$

- · Can a circle have r ≤ 0?
- · N0000000000000

- Can a circle have area equal to 0?
- · N000000000000

Domain and Range of $A(r) = \pi r^2$

