

Self-Adjoint Fuzzy Linear Operator in a Fuzzy Hilbert Space

A.R.Manikandan¹, C. Arun Kumar² & M. Sivaji³

¹PG and Research Department of Mathematics, Cardamom Planters' Association College, Madurai Kamaraj University, Madurai-625 021, Tamilnadu, India

^{2,3}Department of Mathematics, SRM Institute of Science and Technology, Tiruchirappalli Campus, Tiruchirappalli – 621105, Tamilnadu, India

ABSTRACT: The adjoint fuzzy linear operator and the self-adjoint fuzzy linear operator working on a fuzzy Hilbert space (FH-Space) are the subjects of this work-study. The features of the adjoint and self-adjoint fuzzy operators in an FH-adjoint fuzzy operators in an FH-space are discussed in detail along with a number of definitions, several elementary propositions on positive fuzzy operators, and numerous theorems.

Keywords: Adjoint Fuzzy Operators, Self-Adjoint Fuzzy operator, FH-space, FIP-Space.

AMS subject classifications: 54H25, 47S40, 03E72.

INTRODUCTION

In 1965, Zadeh [7] developed the idea of a fuzzy set. In addition to proving a fixed point theorem for fuzzy mappings, Heilpern [3] proposed the idea of fuzzy mappings as a mapping from an arbitrary set to one subset of fuzzy sets in a metric linear space. The result of Heilpern was expanded and broadened by several authors[5], [6]. We demonstrate fixed point theorems for fuzzy mappings that Heilpern proposed and applied to Hilbert spaces in the current study [3]. The idea of fuzzy inner product space (FIP-space), proposed by Felbin [1], Gani and Manikandan [4], can be seen as a generalisation of the idea of inner product space. Fuzzy Hilbert space and its applications were studied by Goudarzi, Mand Vaezpour, and S. M. [2] in 2009.

The following rules apply to the paper: There are various early findings in Section 2. The concept of adjoint fuzzy linear operators, self-adjoint fuzzy linear operators, many theorems, and a discussion of some of these fuzzy operators' features are introduced in section three.

PRELIMINARIES

In the following discussions, we mainly follow the definitions and notations due to Heilpern

Let H be a Hilbert space and $F(H)$ be collection of all fuzzy sets in H . Let $P_A \in F(H)$ and $\alpha \in [0,1]$. The α -level set of A , denoted by A_α is defined as

$$A_\alpha = \{x: A(x) \geq \alpha\} \text{ if } \alpha \in (0,1]$$

$$A_0 = \{x: A(x) > 0\},$$

Where \bar{B} stands for the closure of a set B .

Definition

A fuzzy subset A of $F(H)$ is said to be an approximate quantity iff its α -level set is a nonfuzzy compact convex subset of $F(H)$ for each $\alpha \in [0, 1]$ and $\sup_{x \in F(H)} A(x) = 1$. From the collection $F(H)$, the sub collection of all approximate quantities is denoted by $W(H)$.

Definition

Let A be in $F(H)$ and α be in $[0,1]$ such that $\|A\| = \alpha$ or $n(P_A) = \alpha$, then the pair (P_A, α) is called a fuzzy point in $F(H)$ and it is denoted by P_A^α . The dual fuzzy point P_A^α is the point with norm $(1-\alpha)$ denoted by $P^* = P^{1-\alpha}$.

Definition

The set of all fuzzy points in $F(H)$ is given by $P^*(F(H)) = \{P_A^\alpha | A \in F(H), \alpha \in [0,1]\}$. In F we follow the usual \leq order relation correspondingly we define an order relation in $P^*(F(H))$.

Definition

We define $P_A^\alpha < P_B^\beta$ iff $\alpha < \beta$ and $P_A^\alpha = P_B^\beta$ iff $A = B$ (then automatically $\alpha = \beta$).

Proof.

For $m < n$,

$$\text{let } P_{A_{m,n}} = T_n - T_m.$$

By the generalized Schwartz inequality with $T = P_{A_{m,n}}$ and $y = P_{A_{m,n}}P_x$,

$$\begin{aligned} \text{We have } n(P_{A_{m,n}}P_x)^4 &= \left\| \left(P_{A_{m,n}}P_x, P_{A_{m,n}}P_x \right) \right\|^2 \\ &= \left\| P_{A_{m,n}}P_x, P_y \right\|^2 \\ &\leq (P_{A_{m,n}}P_x, P_x)(P_{A_{m,n}}P_y, P_y). \end{aligned}$$

Since $0 \leq P_{A_{m,n}} \leq MI$, we have $(P_{A_{m,n}}P_y, P_y) \leq M^3 n(P_x)^2$

$$\text{Hence } n(T_n P_x - T_m P_x)^4 \leq M^3 n(P_x)^2 \{T_n P_x, P_x - T_m P_x, P_x\}.$$

Since the F-sequence $(T_n P_x, P_x)$ is a F-bounded increasing sequence of real numbers, it follows that $(T_n P_x)$ is a F-Cauchy sequence which F-converges to an element $TP_x \in P^*(F(H))$.

Proposition. 4

If $T \geq 0$, $I + T$ is invertible, $(I + T - 1) \geq 0$, and $(I + T) - 1 \in (T)$.

Proof.

Now, We have

$$\begin{aligned} I &\leq I + T \leq (1 + M)I, \\ \frac{1}{1 + M} &\leq P_A \leq I \end{aligned}$$

$$\text{Where } P_A = \frac{1}{1+M}(I + T)$$

$$\text{Therefore } n(I - P_A) \leq n\left(1 - \left(\frac{1}{1+M}\right)I\right) = \frac{M}{1+M} < 1.$$

Proposition. 5

If $P_A \geq 0$, $P_B \geq 0$, $P_A P_B = P_B P_A$ then $P_A P_B \geq 0$.

Proof.

Since $P_A \in (P_B)$, we have $(P_B)^{\frac{1}{2}} \in (P_A)$ and so

$$\begin{aligned} P_A P_B &= P_A (P_B)^{\frac{1}{2}} (P_B)^{\frac{1}{2}} \\ P_A P_B &= (P_B)^{\frac{1}{2}} P_A (P_B)^{\frac{1}{2}} \end{aligned}$$

$$\text{Therefore } ((P_B)^{\frac{1}{2}} P_A (P_B)^{\frac{1}{2}} x, x) = (P_A (P_B)^{\frac{1}{2}} x, (P_B)^{\frac{1}{2}} x) \geq 0.$$

Theorem.1:

Let $P_A \geq 0$, and let $P_B = 2(P_A)^2(I + (P_A)^2)^{-1}$. Then

1. $P_B \in (P_A)$,
2. $0 \leq P_B \leq P_A$,
3. $I - P_B = (I - P_A)(I + P_A)(I + (P_A)^2)^{-1}$,
4. if P_ϕ is a projective permutable with P_A and $P_\phi \leq P_A$, then $P_\phi \leq P_B$, for some $P_A, P_B, P_\phi \in P^*(F(H))$

Proof.

Proposition (h) implies (1).

That $P_B \geq 0$ is clear since $(P_A)^2$ and $(I + (P_A)^2)^{-1}$ are permutable.

$$\begin{aligned} \text{Also } (I + (P_A)^2)(P_A - P_B) &= P_A + (P_A)^3 - 2(P_A)^2 = P_A(I - P_A)^2 \geq 0, \\ P_A - P_B &= (I + (P_A)^2) - 1(I + (P_A)^2)(P_A - P_B) \geq 0 \end{aligned}$$

This proves (2), and (iii) is straight forward.

Let P_ϕ be a projection such that $P_\phi \in P_A'$ and $P_\phi \leq P_A$. We have

$$\begin{aligned} P_\phi &= (P_\phi)^2 \leq P_\phi P_A \leq (P_A)^2 \\ P_\phi &= (P_\phi)^2 \leq (P_A)^2 P_\phi. \\ (I + (P_A)^2)(P_B - P_\phi) &= 2(P_A)^2 - (I + (P_A)^2)P \geq 2(P_A)^2 - 2(P_A)^2 P \\ &= 2(P_A)^2(I - P_\phi) \geq 0 \end{aligned}$$

Since $(I + (P_A)^2)^{-1}$ is permutable with all the fuzzy operators concerned, for some $P_A, P_B, P_\phi \in P^*(F(H))$

$$P_B - P_\phi \geq (I + (P_A)^2)^{-1} 2(P_A)^2(I - P_\phi) \geq 0.$$

Theorem.2:

Let $P_A \in P^*(F(H))$ be a positive operator, and let the sequence (P_{A_m}) be defined inductively by

$$P_{A_1} = P_A, P_{A_{m+1}} = 2(P_{A_m})^2(I + (P_{A_m})^2)^{-1} (m = 1, 2, \dots)$$

Then

1. $0 \leq P_{A_{m+1}} \leq P_{A_m}$ ($m = 1, 2, \dots$),
2. The sequence (P_{A_m}) converges strongly to a projection Q belonging to (P_A) .
3. $Q \leq P_A$,
4. $(I - P_A)(I - Q) \geq 0$,
5. Q is maximal in the sense if P_φ is a projection permutable with P_A
And satisfying $P_\varphi \leq P_A$, then $P_\varphi \leq Q$.

Proof.

- (1) This follows at once from theorem 1. (2) and (3). It follows from (1) and Proposition (3) that (P_{A_m}) converges strongly to a positive operator Q with $Q \leq P_A$, and that $Q \in (P_A)$. It remains to prove that Q is a projection.

Since $0 \leq P_{A_m} \leq P_A$, we have

$$n(P_{A_m}) \leq n(P_A) (m = 1, 2, \dots);$$

Therefore $\lim_{n \rightarrow \infty} P_{A_m} P_x = Q P_x$ for some $P_A, P_x \in P^*(F(H))$

$\lim_{n \rightarrow \infty} (P_{A_m})^2 P_x = Q^2 P_x$ for some $P_A, P_x \in P^*(F(H))$

$\lim_{n \rightarrow \infty} P_{A_{m+1}} \{(I + Q^2)P_x - (I + (P_{A_m})^2)P_x\} = 0$, for some $P_x \in P^*(F(H))$

Therefore $(Q - Q^2)^2 = 0$, But $Q - Q^2$ is symmetric, this gives $(Q - Q^2)^2 = 0$, hence Q is a projection.

$$(4) (I - P_{A_m}) = (I - P_{A_{m-1}})(I + P_{A_{m-1}})(I + (P_{A_{m-1}})^{-1})$$

$$(I - P_A)(I - P_{A_m}) \geq 0$$

$$(I - P_A)(I - Q) \geq 0$$

(5) Let P_φ be a projection permutable with P_A such that $P_\varphi \leq P_A$.

By repeated application of theorem 1 and (4), P_φ is permutable with P_{A_m}

And $P_\varphi \leq P_{A_m}$. In the limit we have $P_\varphi \leq Q$.

CONCLUSION

The adjoint Fuzzy linear operator's definitions are insertable in this work into a fuzzy Hilbert space. In order to demonstrate several fundamental theorems and elementary propositions, adjoint and self-adjoint fuzzy operators in FH-space were used.

REFERENCES

1. Felbin, C, "Finite dimensional Fuzzy normed linear space", Fuzzy Sets and Systems. Vol. 48, pp.239-248. (1992)
2. Goudarzi. M and Vaezpour. S. M, "On the definition of Fuzzy Hilbert spaces and its Application", J. Non linear Sci. Appl. Vol. 2, No. 1, pp. 46-59. (2009).
3. Heilpern.S, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. **83**, 566-569 (1981).
4. Nagoor Gani. A and Manikandan. A. R "On Bi-Normed Fuzzy Matrices" Advances in Fuzzy Sets and System, Volume 18, Number 2, ISSN: 0973-421X (2014).
5. SOM. T, Mukherjee. R. N, Some fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, **33**, 213-219 (1989).
6. Yongfusu. "Riesz Theorem in probabilistic inner products spaces", Inter.Math.Forum, Vol.2, No.62, pp. 3073-3078 (2007).
7. Zadeh. L.A, "Fuzzy sets," Information and Control, vol. 8, no.3, pp. 338-353, (1965).