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ABSTRACT: The adjoint fuzzy linear operator and the self-adjoint fuzzy linear operator working on a
fuzzy Hilbert space (FH-Space) are the subjects of this work-study. The features of the adjoint and self-
adjoint fuzzy operators in an FH-adjoint fuzzy operators in an FH-space are discussed in detail along with a
number of definitions, several elementary propositions on positive fuzzy operators, and numerous theorems.
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INTRODUCTION

In 1965, Zadeh [7] developed the idea of a fuzzy set. In addition to proving a fixed point theorem for fuzzy
mappings, Heilpern [3] proposed the idea of fuzzy mappings as a mapping from an arbitrary set to one subset of
fuzzy sets in a metric linear space. The result of Heilpern was expanded and broadened by several authors[5],
[6]. We demonstrate fixed point theorems for fuzzy mappings that Heilpern proposed and applied to Hilbert
spaces in the current study [3]. The idea of fuzzy inner product space (FIP-space), proposed by Felbin [1], Gani
and Manikandan [4], can be seen as a generalisation of the idea of inner product space. Fuzzy Hilbert space and
its applications were studied by Goudarzi, Mand Vaezpour, and S. M. [2] in 2009.

The following rules apply to the paper: There are various early findings in Section 2. The concept of adjoint
fuzzy linear operators, self-adjoint fuzzy linear operators, many theorems, and a discussion of some of these
fuzzy operators' features are introduced in section three.

PRELIMINARIES

In the following discussions, we mainly follow the definitions and notations due to Heilpern

Let H be a Hilbert space and F(H) be collection of all fuzzy sets in H. LetP, € F(H) and o € [0,1].Thea-level
set of A, denoted by A, is defined as
A, = {x:A(x) = a}ifa € (0,1]
Ay = {x:A(x) > 0},
Where B stands for the closure of a set B.

Definition

A fuzzy subset A of F(H) is said to be an approximate quantity iff its a-level set is a nonfuzzy compact
convex subset of F(H)for each a € [0, 1] and supyeramyA(x) = 1. From the collection F(H), the sub collection
of all approximate quantities is denoted by W(H).

Definition
Let Abein F(H) and o be in [0,1] such that ||A||=a or n(P,) = o, then the pair (P, o) is called a fuzzy point in
F(H) and it is denoted by P§. The dual fuzzy point P is the point with norm (1-o)) denoted by P* = P~

Definition
The set of all fuzzy points in F(H) is gven by P*(F(H)) = {Pf|AcF(H), ae [0,1]}. In F we follow the usual <
order relation correspondingly we define an order relation in P*(F(H)).

Definition
We define Py < P]f iff o <pand Py = PSiffA = B (then automatically a = B).
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Definition
A fuzzy Hilbert space (F(H))is a vector space over [0,1]with a mapping P*(F(H)) x P*(F(H)) - [0,1]called
the scalar product and denoted by (P,, P,)which satisfies the following conditions

I) (P, Py) = (Py' P)

i) (P + Py By) = (B, By + (P, , B (B, , Py, Py € P*(F(H)))

iii) (aPy, Py) = a(Py, Py)(Py, Py € P*(F(H)),a € [0,1])

iV) (P, P,) > 0forx # 0; (P, P,) = OforP, = 0(P, € P*(F(H)))

v) P*(F(H)) is a Banach space with the norm n(P,) = (,, PX)%.

Let F(H) be are al or complex Hilbert space, and let S denote the class of all F-bounded symmetric operators
in F(H) and F-bounded linear mappings of T into it self such that
(TP, P,) = (P, TP,)(P,, P, € P*(F(H)))
Where S is the class bounded self adjoint operators, S = S*. Arelation < is introduced into S by writing A < B
or B > A to denote that
(PAPX’ Px) < (PBer PX) (Px € P*(F(H)))
The operators T belonging to S that satisfy T>0 are called positive operators.

Definition

Let (E, F,x)be a probabilistic inner product space.

1. Asequence{P, } € E is called F-converges to P € E,If for any e > 0 and » > 0,3N € Z+,N = N(e, 1) Such
that Fx,, _ x xpn — x(¢) > 1 —Awhenever n > N.

2. A linear functionalf(P,)defined on E is called F—continuous, if P, — Py implies f(P, ) — f(Po) for any
{P,.}, P €E.

Definition
Let (E, G,x) be a F(H)- space with IP:(w,v) = sup {x e R: G(u,v,x) < 1},Vu,v € E
and let S € FB(E), then S is self-adjoint Fuzzy operator, ifS = S*where S* is adjoint Fuzzy operator of S.

SOME ELEMENTARY PROPOSITIONS ON POSITIVE FUZZY
OPERATORS

Proposition. 1
For any positive operator T, the generalized Schwartz inequality holds
(TP, B < (TP, P)(TP,, P)
Proof.
If B(P,, P,) = (TP, B,)is a positive semi-definite symmetric bi-linear form and
So the generalized Schwarz inequality for this form.

Proposition. 2
If T is a positive operator, then n(T) = sup{(TP, P.):n(P,) <1}
Proof.
Let T be a positive operator and let M = sup{(TP, P) : n(P,) £ 1}
By the Schwarz inequality
(TP, Bl < n(TP)n(Py),
MEAT) oo (D)
putting P,=TP, in the generalized Schwarz inequality, we have
n(TP)* = (TP, TR)? = |TP, Py|2 < (TP, P)(TP,P)
< M2n(P.)*n(TP,)?,
NTYSM oo Q)
From (1) and (2)
n(T) = sup{(TP, B,):n(P,) <1}

Proposition. 3
Let (T;,) be a fuzzy bounded increasing sequence of elements of S, T,, < Ty,.; < M.I. Then(T,) F-converges
strongly to an element T of s
Lim TP, = TPy (P € P*(F(H)))
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Proof.

Form <n,

Iet PAmn = Tn - Tm.

By the generalized Schwartz inequality with T = P, andy = P, Py,

We have n(Py,, .P)' = |(Pa,,.Pe Pa >F ) ]

= |&m,an’PY|2
< (Payy P PO (Pa 1P B).
Since0 < P, < MI,wehave(P,,, P, P,) < M*u(P,)
Hence n(T,,P, — TP )* < M3n(P,)} {T,P,, P, — Ty P, P}
Since the F-sequence(TnP,, P,)is a F-bounded increasing sequence of real numbers, it follows that (T,,B,) is a F-
Cauchy sequencewhich F-converges to an elementT P, € P*(F (H)).

Proposition. 4
IfT > 0,1+ Tisinvertible, [+ T—1)>0,and I +T) — 1 € (T).

Proof.
Now, We have
I<I+T< 1+ M),
<P, <I
1 1+M~ 47
Where Py = — (I +T)
Therefore n(I — P,) < n(l - (HLM)I) - H—LM <L

Proposition. 5
If PAZO,PBZO,PAPB=PBPAthenPAPBZO.

Proof.
Since P, € (Pg),we have(PB)% € (P,) and so
PyPg = PA(Pi?)%(PB)%
X X ) PAPBI= (Pp)2P4(Pp)?
Therefore ((P5)2P4(Pg)2x, x) = (Pa(Pg)ex, (Pg)ex) 2 0.

Theorem.1:
Let P, > 0,and let P = 2(P,)%(I + (P,)?)~*. Then
1. Pz e(Py)
2. 0Pz <Py,
8. I=Py=(-P)U+P)U+ (P
4. if P,is a projective permutable with P,and P, < P,, then P, < Pg, for some P,, P, P, € P*(F(H))
Proof.
Proposition (h) implies (1).
That P > 0 is clear since (P,)? and (I + (P,)?)~! are permutable.
Also(I + (P)*)(Pa = Pg) = Py + (P4)® = 2(P)?* = P4(I = Py)* 2 0,

Py — Py = (I + (P)?) —1(I + (P)*) (P4 — P5) 2 0
This proves (2),and (iii) is straight forward.
Let P, be a projection such thatP,, € P,"and P, < P,. We have

P, = (P,)* S PPy < (Py)*
Pg:) = (Pg:))z < (PA)ZPgo
(I + (P)*)(Ps = B,) = 2(Pa)? = (I + (P)*)P 2 2(P4)? — 2(Pa)*P
=2(P)*(I-F,)20
Since(I + (P,)?)~! is permutable with all the fuzzy operators concerned,
for some Py, P, P, € P*(F(H))
Pg =P, 2 (I + (P)*)™'2(P)*U - P,) 2 0.
Theorem.2:
Let P, € P*(F(H)) be a positive operator, and let the sequence (P,,, ) be defined inductively by

PAl = PA’PAm+1 = Z(PAm)z(I + (PAm)z)_l(ﬂ’l = 1,2,...)
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Then

0< Py SPa,(m=12,.),

The sequence (P,,,) converges strongly to a projection Q belonging to(Py).
Q <P,

(I-P)U-Q) 20,

Q is maximal in the sense if R, is a projection permutable e with P,

And satisfying P, < P,, then P, < Q.

W e

Proof.
(1) This follows at once from theorem 1. (2) and (3). It follows from (1) and Proposition (3) that (Py,,)

converges strongly to a positive operator Q with Q < P,, and that Q € (P,). It remainsto p that Q is a

projection.

Since 0 < P,,, < P,, we have

n(Py,,) <SuPy)(m=12,...);
There fore lim P, P, = QP, for some Py, P, € P*(F(H))
n—oo
lim(Py, )P, = Q*P, for some Py, P, € P*(F (H))
n—oo
limP, . AU+ Q)P — (I + (Py,)?)P.} =0, for some P, € P*(F(H))
n—oo
Therefore (Q — Q?)% = 0, But Q — Q2 is symmetric, this gives (Q — Q)2 = 0, hence Q is a projection.
) (1= Pap) = (1= Pap_ J(I+Pay )T+ Papy_D7)
(I—-P)(I—Py ) =0

I-POI-Q =0
(5) Let P, be a projection permutable with P, such that P, < P,.

By repeated application of theorem1 and (4),P,, is permutable with P,
And P, < P, . In the limit we have P, < Q.

CONCLUSION

The adjoint Fuzzy linear operator's definitions are insert able in this work into a fuzzy Hilbert space. In order to
demonstrate several fundamental theorems and elementary propositions, adjoint and self-adjoint fuzzy operators
in FH-space were used.
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