

Received: 5th January 2022

Revised: 19th January 2022

Accepted: 10th February 2022

CAUCHY SEQUENCE IN FUZZY BI-NORMED LINEAR SPACES

A. R. MANIKANDAN

ABSTRACT

In this paper we introduce the notion of fuzzy point and Cauchy sequence in fuzzy bi-normed linear space and some basic results related to these notions. Certain results in connection with the a fuzzy bi-normed convergence and Cauchy sequence are also analyzed

Keywords: Fuzzy point, Bi-norm, Convergence, Cauchy Sequence, Complete.

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [7] in 1965. A. White [6] introduced the 2-Banach Space. A.K. Katsaras [5] introduced the Fuzzy topological vector spaces. Meenakshi A.R. and Cokilavany [3] introduced the concept of fuzzy 2-normed linear spaces. Nagoorgani A. and Kalyani G. [4] introduced the Bi-normed sequences in fuzzy matrices. [2] Introduced the On fuzzy 2-metric space, Cokilavany.D. The organization of the paper is as follows: Section 2, provides some preliminary results which are used in this paper. In section 3, we have discussed convergence and F- Cauchy sequence theorem is proved in the realm of fuzzy bi-normed linear spaces in $P^*(X)$.

2 PRELIMINARIES

Let X be a nonempty set, $I = [0,1]$ be the unit interval. The pair $(x, \alpha), x \in X, \alpha \in I$ is called a fuzzy point in X , denoted by P_x^α or $P(x, \alpha)$, some times simply P . Fuzzy point $P^{1-\alpha}$ is called the dual point of P_x^α usually the dual point of P is denoted by P^* . The set of all fuzzy points in X is denoted by $P^*(X) = \{P_x^\alpha : x \in X, \alpha \in [0,1]\}$. For any fuzzy set $A \in I^X$, the collection of all mappings of X into I . we say that $P_x^\alpha \in A \Leftrightarrow \alpha < A(x)$ or $A(x) = 1$ and $P_x^\alpha \in A \Leftrightarrow \alpha \leq A(x)$ and $A(x) \neq 0$. Let $P_x^\alpha, P_y^\beta \in P^*(X)$ be fuzzy points, then we say that $P_x^\alpha \leq P_y^\beta \Leftrightarrow x = y, \alpha \leq \beta$ and $P_x^\alpha < P_y^\beta \Leftrightarrow x = y, \alpha < \beta$.

Definition 2.1

A fuzzy bi-norm for a real or complex linear space X is a real valued function θ defined on $P^*(X) \times P^*(X)$ to $[0, 1]$ satisfying the following conditions. For any $P_1, P_2, P_3 \in P^*(X)$ and $\alpha \in [0,1]$

- (i) $\theta(P_1, P_2) = 0$ if and only if $P_1 \leq P_2$ or $P_2 \leq P_1$
- (ii) $\theta(P_1, P_2) = \theta(P_2^*, P_1^*)$
- (iii) $\theta(rP_1, P_2) = |r|\theta(P_1, P_2), \forall r \in [0,1]$
- (iv) $\theta(P_1 + P_2, P_3) \leq \theta(P_1, P_3) + \theta(P_2, P_3)$

Definition 2.2:

Let A be in $P^*(X)$ and α be in $[0,1]$ such that $\|A\| = \alpha$. Then the pair (A, α) is called a fuzzy point in $M_n(F)$ and it is denoted by P_A^α . The dual fuzzy point for P_A^α is the point with

α -norm $(1-\alpha)$ denoted by $P^* = P^{1-\alpha}$

Definition 2.3:

The set of all fuzzy point in $M_n(F)$ is given by $P^*(X) = \{P_A^\alpha / A \in P^*(X), \alpha \in [0,1]\}$

In F we follow the usual \leq order relation correspondingly we define an order relation in $P^*(X)$ as follows.

Definition 2.4:

We define $P_A^\alpha < P_B^\beta$ if and only if $\alpha < \beta$ and $P_A^\alpha = P_B^\beta$ if and only if $A = B$
(then automatically $\alpha = \beta$)

Definition 2.5:

A sequence $\{P_{A_n}\}$ in this fuzzy binormed linear space $\{M_n(F), \theta\}$ is called a sequence with respect to bi-norm if there exists P_A, P_B in $P^*(M_n(F))$ such that $P_A \neq P_B$,

$\lim \theta(P_{A_n} - P_{A_m}, P_A) = 0$ and $\lim \theta(P_{A_n} - P_{A_m}, P_B) = 0$

Definition 2.6:

A sequence $\{P_{A_n}\}$ in $\{M_n(F), \theta\}$ is called a convergent sequence if there is a P_A in $P^*(M_n(F))$ such that

$\lim \theta(P_{A_n} - P_A, P_B) = 0$ for all P_B in $P^*(M_n(F))$

3. Convergence and F- Cauchy Sequence

Theorem 3.1: Let (X, θ) be a fuzzy Bi-Normed linear space and let $\{P_{x_n}\}$ and $\{P_{y_n}\}$ be two sequence in $P^*(X)$ such that $P_{x_n} \rightarrow P_x$ and $P_{y_n} \rightarrow P_y$, where P_x, P_y in $P^*(X)$, (i) $P_{x_n} + P_{y_n} \rightarrow P_x + P_y$, (ii) If $\text{Lim}(X, \theta) \geq 2$, then $P_{x_n} P_{y_n} \rightarrow P_x P_y$, (iii) $k P_{x_n} \rightarrow k P_x$ for $k \in [0,1]$

Proof:

(i) Suppose that $P_{x_n} \rightarrow P_x$ and $P_{y_n} \rightarrow P_y$, For each $\epsilon > 0$, $P_z \in P^*(X)$ and $k \in [0,1]$

$\theta((P_{x_n} + P_{y_n}) - (P_x + P_y), P_z) \leq \theta(P_{x_n} - P_x, P_z) + \theta(P_{y_n} - P_y, P_z) = \theta((P_{x_n} - P_{y_n}) - (P_x - P_y), P_z) \geq \frac{\epsilon}{2}$
 $= \theta((P_{x_n} - P_x), P_z) \geq \frac{\epsilon}{2}$ and $\theta((P_{y_n} - P_y), P_z) \geq \frac{\epsilon}{2}$, $\theta((P_{x_n} + P_{y_n}) - (P_x + P_y), P_z) = \lim \theta((P_{x_n} - P_x), P_z) = 0$ for all $P_z \in P^*(X)$ and $\lim \theta((P_{y_n} - P_y), P_z) = 0$ for all $P_z \in P^*(X)$. Therefore $\lim \theta((P_{x_n} + P_{y_n}) - (P_x + P_y), P_z) = 0$ for all $P_x, P_y, P_z \in P^*(X)$.

(ii) Since $P_{x_n} \rightarrow P_x$, $\theta((P_{x_n} - P_x), P_z) < 1$ in $P^*(X)$. $\theta(P_{x_n} P_{y_n} - P_x P_y, P_z) \leq \theta(P_{x_n}, P_z) \theta(P_{y_n} - P_y, P_z) + \theta(P_y, P_z) \theta(P_{x_n} - P_x, P_z)$, We have $\theta(P_{x_n}, P_z) \leq \theta(P_x) + 1$

$$\theta(P_{x_n} P_{y_n} - P_x P_y, P_z) \leq (\theta(P_x) + 1) \theta(P_{y_n} - P_y, P_z) \theta(P_y, P_z) \theta(P_{x_n} - P_x, P_z) \dots \dots \dots (1)$$

Let $\epsilon > 0$ and $P_z \in P^*(X)$, Choose $\eta > 0$ such that $0 < 2\eta < \frac{\epsilon}{\theta(P_x) + \theta(P_y) + 1}$ (2)

Since $P_{x_n} \rightarrow P_x$, and $P_{y_n} \rightarrow P_y$, $\theta(P_{x_n} - P_x, P_z) < \eta$ and $\theta(P_{y_n} - P_y, P_z) < \eta$ in $P^*(X)$

$\theta(P_{x_n} - P_x, P_z) \cap \theta(P_{x_n} - P_x, P_z) \cap \theta(P_{y_n} - P_y, P_z)$ in $P^*(X)$ and for each $P_x, P_y, P_z \in P^*(X)$.

From (1) and (2), $\theta(P_{x_n} P_{y_n} - P_x P_y, P_z) < \epsilon$. Therefore $\theta(P_{x_n} P_{y_n} - P_x P_y, P_z) \geq \epsilon$ in $P^*(X)$. Hence $P_{x_n} P_{y_n} \rightarrow P_x P_y$.

(iii) Since $P_{x_n} \rightarrow P_x$, $\theta(P_{x_n} - P_x, P_z) \geq \epsilon$. Now let $C \neq 0$, $\epsilon > 0$ and $P_x, P_z \in P^*(X)$ such that $\theta(k P_x, P_z) = |k| \theta(P_x, P_z)$, let $\theta(k P_{x_n} - k P_x, P_z) \geq \epsilon$, Now prove that $\epsilon \in \mathcal{E}_1$, Let $m \in \theta(k P_{x_n} - k P_x, P_z)$. For some $\epsilon_1 > 0$, $\epsilon \leq \theta(k P_{x_m} - k P_x, P_z) \leq |k| \theta(k P_{x_m} - k P_x, P_z)$

$$\frac{\epsilon}{|k|} \leq \theta(k P_{x_m} - k P_x, P_z), \epsilon \leq \epsilon_1. \text{Therefore } m \in \theta(k P_{x_m} - k P_x, P_z)$$

Theorem 3.2: Let (X, θ) be a fuzzy Bi-Normed linear space and let $\{P_{x_n}\}$ be a F-Cauchy Sequence. If $\{P_{x_n}\}$ has a subsequence $\{P_{x_{n_k}}\}$ converging to P_x then $P_{x_n} \rightarrow P_x$.

Proof :

Let $\epsilon > 0$, $P_{x_n}, P_{x_{n_k}} \in P^*(X)$ and $P_z \in P^*(X)$, $\theta(P_{x_n} - P_{x_{n_k}}, P_z) > \frac{\epsilon}{2}$. Since $\{P_{x_{n_k}}\} \rightarrow P_x$, $\theta(P_{x_{n_k}} - P_x, P_z) \geq \frac{\epsilon}{2}$ for all $n \geq n_0 \in \mathbb{N}$, $\theta(P_{x_n} - P_x, P_z) = \theta(P_{x_n} - P_{x_{n_k}} + P_{x_{n_k}} - P_x, P_z) \geq \theta(P_{x_n} - P_{x_{n_k}}, P_z) + \theta(P_{x_{n_k}} - P_x, P_z)$, $\theta(P_{x_n} - P_x, P_z) \geq \epsilon$. Therefore, $\{P_{x_n}\}$ has a subsequence $\{P_{x_{n_k}}\}$ converging to P_x in $P^*(X)$.

Theorem 3.3: Let (X, θ) be a fuzzy Bi-Normed linear space and let $\{P_{x_n}\}$ be a sequence $P^*(X)$. If $\{P_{x_n}\}$ is a convergent then it is a cauchy sequence.

Proof : Let $\{P_{x_n}\}$ converges to P_x , $\text{Lim} \theta(P_{x_n} - P_x, P_z) = 0$ for each $P_z \in P^*(X)$. There exists $n_0 \in \mathbb{N}$ such that $\theta(P_{x_n} - P_x) > \epsilon$ for every $\epsilon > 0$. Each $P_2 \in P^*(X)$, $\theta(P_{x_{n_k}} - P_{y_{n_k}}, P_z) \leq \theta(P_{x_{n_k}} - P_x, P_z) + \theta(P_{y_{n_k}} - P_x, P_z) < 2 \epsilon$ for every $\epsilon > 0$, each $P_2 \in P^*(X)$, $\theta(P_{x_{n_k}} - P_{y_{n_k}}, P_z) < 2 \epsilon$. Hence $\{P_{x_n}\}$ is an F-Cauchy Sequence.

Example3.5: Let (X, θ^1) be a Bi-normed linear space. Define $\theta: X \rightarrow [0,1]$ by

$$\theta(P_x)(t) = \begin{cases} 1 & \text{if } t > \theta(P_x) \\ 0 & \text{if } t > \theta(P_x) \end{cases}$$

Then $\theta_2(P_x) = (\theta(P_1^*(x)), \theta(P_2^*(x))) \forall \alpha \in (0,1]$, It is verify that,

- i. $\theta(P_1, P_2) = 0$ if and only if $P_1 \leq P_2$ or $P_2 \leq P_1$
- ii. $\theta(cP_1, P_2) = |c| \theta(P_1, P_2)$ for all $c \in K$.
- iii. $\theta(P_1 + P_2, P_3) \leq \theta(P_1, P_3) + \theta(P_2, P_3)$

Then (X, θ) is called a fuzzy bi-normed linear space with respect to the Bi-norm $[\theta(P_1, P_2)]$ is defined for $P_1 = P_2$ as 0 by (i); therefore $\theta(P_1, P_2) \neq 0$ is defined for $P_1 < P_2$.

Thus (X, θ) is a fuzzy Bi-normed linear space. Let $\{P_{x_n}\}$ be a Cauchy sequence in $P^*(X)$.

$$\lim \theta(P_{x_n} - P_{y_n}, P_z) = 0 \Rightarrow \{P_{x_n}\} \text{ be a Cauchy sequence in } P^*(X).$$

Hence (X, θ) is complete, (X, θ) is a real fuzzy Banach Space.

Theorem3.6: Every fuzzy Bi-norm linear space with normal constant K is complete.

Proof: Let (X, θ) be a fuzzy Bi-normed linear space with normal constant K. Let $\{P_{x_n}\}$ be a Cauchy sequence in $P^*(X)$. Let $\dim X = n$ and $\{e_1, e_2, \dots, e_n\}$ be a basic for $P^*(X)$. Then each $\{P_{x_n}\}$ has a unique $P_{x_n} = \beta_1^n e_1 + \beta_2^n e_2 + \dots + \beta_m^n e_m$. Since $\{x_n\}$ is a Cauchy sequence for every $e \in P^*(X)$ with $\theta(e) \gg 0$ there exists a positive integer N such that $\theta(P_{x_n} - P_{y_n}) \ll \theta(e)$. There exists $c \in P^*(X)$ with $\theta(c) > 0$ such that $\theta(\varepsilon) \gg \theta(P_{x_n} - P_{x_k}, h) \geq \theta(c) \sum_{i=1}^m |P_{\beta_i^{(n)}} - P_{\beta_i^{(k)}}, P_\beta|, \theta(c) \sum_{i=1}^m |P_{\beta_i^{(n)}} - P_{\beta_i^{(k)}}, P_\beta| \leq \theta(e) \leq k \theta(e) \forall n, k \geq N, \theta(c) \sum_{i=1}^m |P_{\beta_i^{(n)}} - P_{\beta_i^{(k)}}, P_\beta| \leq k \theta(e) \Rightarrow \theta_\alpha(c) |P_{\beta_i^{(n)}} - P_{\beta_i^{(k)}}, P_\beta| \leq k \theta_\alpha(e)$. Since $c \in P^*(X)$ is arbitrary of the m sequence $\{\beta_i^{(n)}\}$ is Cauchy in R. Since R is complete, thus each $\beta_i^{(n)}$ converges and denote by β_i are their limits for each $i = 1, 2, \dots, m$. We define $P_x = P_{\beta_1} \varepsilon_1 + P_{\beta_2} \varepsilon_2 + \dots + P_{\beta_m} \varepsilon_m, \theta(P_{x_n} - P_x, P_z) = \theta(\sum_{i=1}^m |P_{\beta_i^{(n)}} - P_{\beta_i^{(k)}}, P_\beta| e_i \leq |P_{\beta_1^{(n)}} - P_{\beta_1}| \theta(e_1) + |P_{\beta_2^{(n)}} - P_{\beta_2}| \theta(e_2) + \dots + |P_{\beta_m^{(n)}} - P_{\beta_m}| \theta(e_m)$. Since $|P_{\beta_i^{(n)}} - P_{\beta_i}| \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\theta(P_{x_n} - P_x, P_z) \rightarrow 0$ as $n \rightarrow \infty$. Thus the Cauchy sequence $\{x_n\}$ converges to $x \in X$. Hence, $\{P_{x_n}\}$ is arbitrary it follows that X is complete.

CONCLUSION

In this paper, we consider the fuzzy Bi-norm and some basic concepts. Cauchy sequence of fuzzy Bi-normed linear space in $P^*(X)$ is convergent, Since these theorem have many applications in functional analysis. Numerical examples are given to clarify the developed theory and the proposed fuzzy Bi-normed linear space.

REFERENCES

- [1] T.Bag. Some Fundamental Theorem in Felbins Type Fuzzy Normed Linear Space. IJMSC, Vol. 1. No, 2, 2011.
- [2] Cokilavany. D., On fuzzy 2-metric space, International journal of Journal of fuzzy Mathematic Archives, volume 8(No.2) 2015 (139-145)
- [3] Meenakshi A.R. and Cokilavany D., On fuzzy 2-normed linear spaces, The Journal of fuzzy mathematics, volume 9(No.2) 2001 (345-351)
- [4] Nagoorgani A. and Kalyani G. Binormed sequences in fuzzy matrices. Bulletin of Pure and Applied Science. Vol. 22E(No.2) 2003; P. 445-451

[5] A.K. Katsaras, Fuzzy topological vector spaces II, *Fuzzy sets and System* 12(1984),143-154

[6] A. White, 2-Banach Space, *Math. Nachr* 42(1969),43-60

[7] L. A. Zadeh, Fuzzy sets, *Information and Control* 8 (1965) 338-353.

AUTHOR DETAILS:

A. R. MANIKANDAN

PG & Research Department of Mathematics, Cardamom Planters' Association College Bodinayakanur, Tamilnadu, India