SPHJCG63 — Digital Electronics

Er R Sithikraja MSc, ME, UGCGINET
Department of Physics
CP A Colege Bodnaydanur

€| <

_ecture 13: Sequential Logic
Counters and Registers

Counters

=" |ntroduction: Counters

= Asynchronous (Ripple) Counters

= Asynchronous Counters with MOD number < 2"

= Asynchronous Down Counters

= Cascading Asynchronous Counters

_ecture 13: Sequential Logic
Counters and Registers

Svynchronous (Parallel) Counters

Up/Down Synchronous Counters

Designing Synchronous Counters

Decoding A Counter

Counters with Parallel Load

_ecture 13: Sequential Logic
Counters and Registers

Registers

" Introduction: Reqisters

% Simple Reqgisters
% Reqisters with Parallel Load

Using Regqisters to implement Sequential Circuits

Shift Reqisters

< Serial In/Serial Out Shift Reqisters

< Serial In/Parallel Out Shift Reqgisters
< Parallel In/Serial Out Shift Reqgisters
< Parallel In/Parallel Out Shift Reqgisters

_ecture 13: Sequential Logic
Counters and Registers

Bidirectional Shift Reqgisters

An Application — Serial Addition

Shift Reqgister Counters
% Ring Counters
s Johnson Counters

Random-Access Memory (RAM)

Introduction: Counters

= Counters are circuits that cycle through a specified
number of states.

= Two types of counters:
< synchronous (parallel) counters
< asynchronous (ripple) counters

= Ripple counters allow some flip-flop outputs to be
used as a source of clock for other flip-flops.

= Synchronous counters apply the same clock to all
flip-flops.

Asynchronous (Ripple) Counters

= Asynchronous counters: the flip-flops do not change
states at exactly the same time as they do not have a
common clock pulse.

= Also known as ripple counters, as the input clock
pulse “ripples” through the counter — cumulative
delay is a drawback.

= nflip-flops — a MOD (modulus) 2" counter. (Note: A
MOD-x counter cycles through x states.)

= Qutput of the last flip-flop (MSB) divides the input
clock frequency by the MOD number of the counter,
hence a counter Is also a frequency divider.

Asynchronous (Ripple) Counters

= Example: 2-bit ripple binary counter.

= Qutput of one flip-flop is connected to the clock input
of the next more-significant flip-flop.

HIGH
J — Qo — Q
ck TUUUL——e |5 bC
Kk pxof LK
FFO FF1
clk __ il T2 T3l 14
Qo |) Timing diagram

Q 0] 1 0 1 0 00 >01—-10—-11—->00...

Asynchronous (Ripple) Counters

= Example: 3-bit ripple binary counter.

HIGH —s .
i o o +h —o
CLK NC — NC — NC
L Th Ll
FFO FF1 FF2
CLK T1 L1 3 ‘4| 15 ' 6 ' 8
Q 0] 1 0 1 1 0 0
Q 0} 0 1 1 0 1 0
Q o o 0 0 1 1 0

Recycles back to 0

Asynchronous (Ripple) Counters

= Propagation delays in an asynchronous (ripple-
clocked) binary counter.

= |f the accumulated delay is greater than the clock
pulse, some counter states may be misrepresented!

CLK __ | 1 2 3 4
Qo
Q1
Q> T
— e — ¢ toy (CLK t0 Qp) —» i« tpr (CLK to Qo)
t ¥ tp 4 (Qoto Qq) o tor (Qoto Q)
PLH N (o)
(CLK to Q) o e— tpn (Q110 Q))

Asynchronous (Ripple) Counters

= Example: 4-bit ripple binary counter (negative-edge

triggered).
HIGH —» ' *
—1J QO T_‘J Ql LJ QZ —J Q3
CLK —odC aC PDC PcC
K K K K
FFO FF1 FF2 FF3
CLK] [
il 2 I3 4 |5 6 |7 8 |9 10 |11 :12 |13 14 |15 16
Qo ﬁ=_.f i 5 i 5 i 5 i
Qs y y y y
Q2 i y
Qs

Asyn. Counters with MOD no. < 2"

= States may be skipped resulting in a truncated
sequence.

= Technique: force counter to recycle before going
through all of the states in the binary sequence.

= Example: Given the following circuit, determine the
counting sequence (and hence the modulus no.)

C B A

Q J Q J Q J
All J, K CLK<OH—r CLK@Q— CLK<O<—_|_|_|_|_|_|_
INnputs Q CLR Q ol R Q o R
are 1
(HIGH). B %
cDo—

Asyn. Counters with MOD no. < 2"

= Example (cont'd):

Output O

C B A
Q I J o I
All J, K CLK<OH—r CLK@Q— cekeo— [LT LT L
: o K K o K
InpUtS QCLR CLR QCLR
are 1 ¥ % P
(HIGH). B
)
1 2 3 4 5 6 7 8 10 11 12
Clock _[[T U UL UL LU MOD-6 counter
A produced by
HE e .
B clearing (a MOD-8
— '\ J binary counter)
© L. when count of six
NAND 1 |/ V— (110) occurs.

Asyn. Counters with MOD no. < 2"

= Example (cont’d): Counting sequence of circuit (in
CBA order).
1 2 3 4 5 6 7 8 9 10 11 12

Clock _1I
A ofilofrlofrlofr LT LT L

BOo 01110 ohoo] | \
co o0 o001/l1 1lo00 [|

NAND 4
Output 0 V /

Counter is a MOD-6
counter.

Asyn. Counters with MOD no. < 2"

= EXxercise: How to construct an asynchronous MOD-5

counter? MOD-7 counter? MOD-12 counter?

= Question: The following is a MOD-? counter?

E

Q J E Q J D Q CQ BQ AQ
<D«r_ <O«r_ O«r_ O«r_ O«r_
Q K Q K Q Q Q Q
CI?R CLR C{rR CIR CLR
C
)]
= All J =K =1.

Asyn. Counters with MOD no. < 2"

= Decade counters (or BCD counters) are counters
with 10 states (modulus-10) in their sequence.
They are commonly used in daily life (e.g.: utility
meters, odometers, etc.).

= Design an asynchronous decade counter.

D
HIGH T 1 1 B
D C B A
» J Q —L- J Ql—e ¢ J Q —L- J Q
cLk ——OoPC -OpC opC -OpC
K K K K
CLR CLR CLR CLR

Asyn. Counters with MOD no. < 2"

= Asynchronous decade/BCD counter (cont’'d).

HIGH D C B A | AC)
J Q—L J QI J Q—L J Q (A.C)
CLK—Pc —Pc D —Pc
K K K K
C LR C LR
o —5 o —5—
| | | l
1 / 0 11
Clock |
Do 1o [t Jo [t Jo [t Jo [t o [
Co o [T 1 o o [t 1 Jo o ips
Bo o o o [T 1 1 1 Jo o0:o
Ao o 0 0 0 0 0 0 [T 1i]a

Asynchronous Down Counters

= So far we are dealing with up counters. Down
counters, on the other hand, count downward from
a maximum value to zero, and repeat.

= Example: A 3-bit binary (MOD-2°) down counter.

1—e

g Qo ¢ Qig I Q 3-bit binary
CLK —a>C '_|——G>C ,_|——G>C up counter
K K K
1—e '
— | Qo ¢— | Qe[Q 3-bit binary
CLK —pC —pC —C down counter
b | K =3 K

Synchronous (Parallel) Counters

= Synchronous (parallel) counters: the flip-flops are
clocked at the same time by a common clock pulse.

= We can design these counters using the sequential
logic design process (covered in Lecture #12).

= Example: 2-bit synchronous binary counter (using T
flip-flops, or JK flip-flops with identical J,K inputs).

Present Next Flip-flop

state state inputs

@ @ A1 Ao A1+ A0+ TA1 TAo
0 0O 1 0 1

R = OO

1 1 O 1 1
0 1 1 0 1
1 0O 0O 1 1

Synchronous (Parallel) Counters

= Example: 2-bit synchronous binary counter (using T
flip-flops, or JK flip-flops with identical J,K inputs).

Present Next Flip-flop

state state inputs
A1 Ao A A TA1 TAo TAl — AO
O O 0 1 0 1

o 1 1 0 1 1 TA=1
1 O 1 1 0 1

1 1 0 0 1 1

CLK

Synchronous (Parallel) Counters

= Example: 3-bit synchronous binary counter (using T
flip-flops, or JK flip-flops with identical J, K inputs).

Present Next Flip-flop
state state inputs
A A1 Ao A AT A TA: TAL TAo
O 0 O 0 0 1 0 0 1
O 0 1 0 1 0 0 1 1
O 1 O 0 1 1 0 0 1
O 1 1 1 0 0 1 1 1
1 0 O 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1
1 1 O 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1
A1 A1 A1
1] A7 Al i
Az{ 1] Az{ (1] 1 Az{ 11| 1] 1
TA2:A1.A0 TA1:A0 TAo:].

Synchronous (Parallel) Counters

= Example: 3-bit synchronous binary counter (cont’d).

TAz - A1.Ao TAl - Ao TAo =1
A, Aq Ao

Q Q Q

K K A K

op — 4 T T

Synchronous (Parallel) Counters

* Note that in a binary counter, the nth bit (shown
underlined) is always complemented whenever

011...11 — 100...00
or 111...11 — 000...00

®= Hence, X, Is complemented whenever
X1 X oo X1 Xo=11...11.

= As aresult, if T flip-flops are used, then
TXy=Xpg - X enn . Xq . X

Synchronous (Parallel) Counters

= Example: 4-bit synchronous binary counter.

TA = A, . A, . A,

CLK l

TA, = A, . A
TA, = A,
TA, =1
A1Ao DAZ.Al.Ao
> QA0 QA1| L QAZI_ | QA3
>C pC pC pC
« Qp l QP l « Qp « Qp

Synchronous (Parallel) Counters

= Example: Synchronous decade/BCD counter.

Clock pulse Q: 0O 01 Qo
Initially 0

0 0 0
1 O 0 0 1 To=1
2 0 0 1 0 _ '
3 0 0 1 1 Tl - Q3 'QO
4 0 1 0 0 —
5 0 1 0 1 T2 - Ql'QO
6 0 1 1 0
7 o 1 1 1 T3=0,.Q:1.Qp + Q3.Qq
8 1 0 0 0
9 1 0 0 1
10 (recycle) 0 0 0 0

Synchronous (Parallel) Counters

= Example: Synchronous decade/BCD counter
(cont’d).

To=1
T1 = Q3.Qo
Ty = Q1.Qo
T3 =Q2.Q1.Qp + Q3.Qo

Q

1

T Q

T

O

>
I

DC

Q,

—1 01

9

DC

L

CLK J

DC

Qs

Up/Down Synchronous Counters

= Up/down synchronous counter: a bidirectional
counter that is capable of counting either up or

down.

= An input (control) line Up/Down (or simply Up)
specifies the direction of counting.

< Up/Down =1 — Count upward

< Up/Down = 0 — Count downward

Up/Down Synchronous Counters

= Example: A 3-bit up/down synchronous binary

counter.
Clock pulse Up Q2 Q1 Qo Down
0 - 0 O=w— 0
1 “ 0 02 1
2 “ 0 15 0
3 “ 0 1v 1
4 (A 1 0 5 O
5 ((: 1 05 1
; R P 1< 8
TQo=1 Up counter Down counter
TQ1 =(Qo.Up) + (Qy'.Up") TQo=1 TQp=1

TQ2=(Q0.Q:.Up) +(Qo". Q. Up") 1gligoQ Igligo,Q ,
2 = Qo-Q1 2= Qp-Q1

Up/Down Synchronous Counters

= Example: A 3-bit up/down synchronous binary
counter (cont'd).

TQo=1

TQ1 = (Qo.Up) + (Qy".Up")
TQ, =(Qo.Q:.Up) +(Qy". Q. Up")

Up —e

-

pC

CLK

By Dy
:D—:C Q
Bt 1

Designing Synchronous Counters

= Covered in Lecture #12.

/v @
= Example: A 3-bit Gray code
(103
(g

counter (using JK flip-flops). &
(019

Present Next Flip-flop

State state iInputs
Q Q1 Q Q) Qi Q° JQ2 KQ2 JQ:1 KQi JQo KQo
O 0 O 0 0 1 0 X 0 X 1 X
O 0 1 0 1 1 0 X 1 X X 0
O 1 O 1 1 O 1 X X 0 0 X
O 1 1 0 1 O 0 X X 0 X 1
1 0 O 0 O O X 1 0 X 0 X
1 0 1 1 O O X 0 0 X X 1
1 1 O 1 1 1 X 0 X 0 1 X
1 1 1 1 0 1 X 0 X 1 X 0

Designing Synchronous Counters

= 3-bit Gray code counter: flip-flop inputs.

Q:Q
QX og 01 11 10

o B
1

x| x| x| %

JQ; = Q1.Q¢’

Q:Q
le og 01 11 10

0
1

(X]]x | x |x
1)
KQ,=Q;.Qq¢

\Q1Qo
Q00 01 11 10
0

|1 X| X
1 X | X
JQ; = Q2".Qy

Q:Q
Qki oc()) 01 11 10

0
1

X | X

X ||X 1|

KQ:1 = Q2.Qo

Q.Q
Qk O(()) 01 11 10
NEEIE

1 X |x [1]
JQp = Q2.Q1 + Q,.Q4
=(Q2 @ Q)

Q1Qo

Q> 00 01 11 10
Ol x (1 | X]

1|(x [1] X
KQp = Q2.Q1" + Q,.Qq
=Q, ®Q,

Designing Synchronous Counters

= 3-bit Gray code counter: logic diagram.

JQ, = Q1.Q¢’ JQ;=0Q7.Qp JQu=(Q2® Q)
KQ, =Q;.Q¢ KQ1 = Q2.Qp KQp = Q2 ® Qg

Q;

-—.:) o173 QQo T_:)—‘] QQll 7 o

> C L —-c o > C
) K i K QP H K ol
0

CLK » »

U ﬁ)

U

Counters with Parallel Load

= Counters could be augmented with parallel load
capability for the following purposes:
< To start at a different state
< To count a different sequence

< As more sophisticated register with increment/decrement
functionality.

Counters with Parallel Load

= Different ways of getting a MOD-6 counter:

ALA3AA; ALA; A A
Load «— Count=1 Clear «— Count=1
«—— Clear =1 «—— Load =0
|4 |3 |2 Il — CP |4 |3 |2 Il — CP

TT 11
Inputs:O—l—l—l—T

Inputs have no effect

(a) Binary states 0,1,2,3,4,5. (b) Binary states 0,1,2,3,4,5.
A AL AL A, A AL AL A,
oo LT 111
«— Count=1 Load «— Count=1
— Clear=1 — Clear=1
Load
l, I3 1, |, f¥— CP l, I3 1, 1, ¥— CP
TT11 TT11
1 010 0 01 1

(c) Binary states 10,11,12,13,14,15. (d) Binary states 3,4,5,6,7,8.

Counters with Parallel Load

Count;}
= 4-bit counter with
parallel load. L 11>

Clear CP Load Count Function

) U Ut

U% (% t% viv,

0 X X X Clearto0 . 7 B 5
1 X 0 0 No change b

1 T 1 X Loadinputs ‘_[> e x
1T 0 1 Next state —

Y
0 U 0L

Clear

ce

YV i
U

Carry-cut

¥

Introduction: Registers

= An n-bit register has a group of n flip-flops and some

logic gates and is capable of storing n bits of
iInformation.

= The flip-flops store the information while the gates
control when and how new information is transferred
Into the register.

= Some functions of register:
< retrieve data from register

< store/load new data into register (serial or parallel)
< shift the data within register (left or right)

Registers With Parallel Load

= |nstead of loading the register at every clock pulse,
we may want to control when to load.

= Loading a register: transfer new information into the
register. Requires a load control input.

= Parallel loading: all bits are loaded simultaneously.

Registers With Parallel Load

Load'.A, + Load. |,
/

Load —D’O—‘—D’C — 7
.. D—>21o o
lo D D
T
L
* :)_T\ D Q
7 7
1, D D
T
L
* :)_T\ D Q
7 7
l, D D
T
L
O—D D Q
I3 D D
CLK >o !

Using Registers to implement
Sequential Circuits

= A sequential circuit may consist of a register

(memory) and a combinational circuit.
Next-state value

" Register » Combin-
Clock > ational
circuit
Inputs — —> Outputs

" The external inputs and present states of the register
determine the next states of the register and the
external outputs, through the combinational circuit.

* The combinational circuit may be implemented by
any of the methods covered in MSI components and
Programmable Logic Devices.

Using Registers to implement
Sequential Circuits

= Example 1:
A* =X m(4,6) = A.X
A =X m(1,2,56)= A X +A)X=A, DX
y=2m(3,7) = A,.xX

Present Next
state Input State Output
Al A X A1+ AZJr Yy
0 0 0 0 0 0 :
A, X)
0 0 1 0o 1 0 L2 Ag ﬁf),
0 1 0 0 1 0 AOX [A
0 1 1 0 O 1 g [D
1 0 0 1 0 0 l D_
1 0 1 0 1 0 X y
1 1 0 1 1 0
1 1 1 0 0 1

Using Registers to implement
Sequential Circuits

= Example 2: Repeat example 1, but use a ROM.

Address Qutputs

1 2 3 1 2 3

O O O 0 0 0

O 0 1 0 1 0

0O 1 0 0O 1 0 o Ag

o 1 1 0 0 1 A, 8x3

1 0 O 1 0 0 ROM

1 0 1 0 1 0 % —— y
1 1 O 1 1 0

1 1 1 0 0 1

ROM truth table

Shift Registers

= Another function of a register, besides storage, Is to
provide for data movements.

= Each stage (flip-flop) in a shift register represents
one bit of storage, and the shifting capability of a
register permits the movement of data from stage to
stage within the register, or into or out of the register
upon application of clock pulses.

Shift Registers

= Basic data movement in shift registers (four bits are
used for illustration).

Datain 4-| + 1+ ++ — Dataout Dataout «— <« +1+ +t+ [+— Datain
(a) Serial in/shift right/serial out (b) Serial in/shift left/serial out
Datain Datain . LI De}a in

|-1 [1T [T 1] r‘ am
T T 1T [— Dataout h ~ g

Data out J, J, J, J,

(c) Parallel in/serial out (d) Serial in/parallel out - ~ >

Data out

(e) Parallel in/

parallel out

(f) Rotate right (9) Rotate left

Serial In/Serial Out Shift Registers

= Accepts data serially — one bit at a time — and also
produces output serially.

Serial data ___T Qo Q1 Q; Qs Serial data
input D Q . . D Q output

p C —pC pC pC

CLK + * +

Serial In/Serial Out Shift Registers

= Application: Serial transfer of data from one register

to another.

Sl

Clock—{ 1\
_/

» Shift register A

SOI Sl

=

» Shift register B

Shift control —

Clock __|

Shift

control

+«— Wordtime—|

CP

T

T, T

Ty

SO

Serial In/Serial Out Shift Registers

= Serial-transfer example.

Timing Pulse Shift register A Shift register B Serial output of B

Initial value \ 1 O 0 0
After T, 1\‘l 10 1 \‘ \‘ \O\‘l 1
After Tz 1 1 1 0 1 1 0 O 0
After T3 0O 1 1 1 0O 1 1 O 0
After Ty 1 0 1 1 1 0 1 1 1

Serial In/Parallel Out Shift Registers

= Accepts data serially.
= Qutputs of all stages are available simultaneously.

Data input D QF+—|D Qts D QF+——D Qf

(>C (>C (>C D C
CLK

Qo Q, Q> Qs

Datainput —{ D SRG 4

CLK —>C LOgiC Symb0|

Parallel In/Serial Out Shift Registers

= Bits are entered simultaneously, but output is serial.

Data input
A —

Do D, D, Ds

SHIFT/LOAD —T—DQ v v

09 (Y f

\/ \/ \J Seria

D C / D C > C bo | e out
CLK - . »

/
SHIFT.Q, + SHIFT'.D,

Parallel In/Serial Out Shift Registers
= Bits are entered simultaneously, but output is serial.

Data in
—

Do D1 D, D3

L]

SHIFT/LOAD — SRG 4
CLK —>C

— Serial data out

Logic symbol

End of segment

