
SPHJC63 – Digital Electronics

ErRSithikrajaM.Sc.,M.E.,UGC-NET

DepartmentofPhysics

CPACollegeBodinayakanur

Lecture 13: Sequential Logic
Counters and Registers

Counters

 Introduction: Counters

 Asynchronous (Ripple) Counters

 Asynchronous Counters with MOD number < 2n

 Asynchronous Down Counters

 Cascading Asynchronous Counters

Lecture 13: Sequential Logic
Counters and Registers

 Synchronous (Parallel) Counters

 Up/Down Synchronous Counters

 Designing Synchronous Counters

 Decoding A Counter

 Counters with Parallel Load

Lecture 13: Sequential Logic
Counters and Registers

Registers

 Introduction: Registers

 Simple Registers

 Registers with Parallel Load

 Using Registers to implement Sequential Circuits

 Shift Registers

 Serial In/Serial Out Shift Registers

 Serial In/Parallel Out Shift Registers

 Parallel In/Serial Out Shift Registers

 Parallel In/Parallel Out Shift Registers

Lecture 13: Sequential Logic
Counters and Registers

 Bidirectional Shift Registers

 An Application – Serial Addition

 Shift Register Counters

 Ring Counters

 Johnson Counters

 Random-Access Memory (RAM)

Introduction: Counters

 Counters are circuits that cycle through a specified

number of states.

 Two types of counters:

 synchronous (parallel) counters

 asynchronous (ripple) counters

 Ripple counters allow some flip-flop outputs to be

used as a source of clock for other flip-flops.

 Synchronous counters apply the same clock to all

flip-flops.

Asynchronous (Ripple) Counters

 Asynchronous counters: the flip-flops do not change
states at exactly the same time as they do not have a
common clock pulse.

 Also known as ripple counters, as the input clock
pulse “ripples” through the counter – cumulative
delay is a drawback.

 n flip-flops  a MOD (modulus) 2n counter. (Note: A
MOD-x counter cycles through x states.)

 Output of the last flip-flop (MSB) divides the input
clock frequency by the MOD number of the counter,
hence a counter is also a frequency divider.

Asynchronous (Ripple) Counters

 Example: 2-bit ripple binary counter.

 Output of one flip-flop is connected to the clock input

of the next more-significant flip-flop.

HIGH

Q0 Q1

Q0

FF1FF0

CLK

J

C

K

J

C

K

Timing diagram

00  01  10  11  00 ...

4321CLK

Q0

1

1

Q0 0 1

Q1 0 0

0 0

1 0

Asynchronous (Ripple) Counters

 Example: 3-bit ripple binary counter.

Q0 Q1

Q0

FF1FF0

J

C

K

J

C

K
Q1

J

C

K

FF2

Q2

CLK

HIGH

4321CLK

1

1 1

Q0 0 1 0 0

0

8765

1 10 0

1 10 0Q1 0 0

Q2 0 00 0 1 11 1 0

Recycles back to 0

Asynchronous (Ripple) Counters

 Propagation delays in an asynchronous (ripple-
clocked) binary counter.

 If the accumulated delay is greater than the clock
pulse, some counter states may be misrepresented!

4321CLK

Q0

Q1

Q2

tPLH

(CLK to Q0)

tPHL (CLK to Q0)

tPLH (Q0 to Q1)

tPHL (CLK to Q0)

tPHL (Q0 to Q1)

tPLH (Q1 to Q2)

Asynchronous (Ripple) Counters

 Example: 4-bit ripple binary counter (negative-edge

triggered).

Q1Q0 J

C

K

J

C

K

FF1FF0

J

C

K

FF2

Q2

CLK

HIGH

J

C
K

FF3

Q3

CLK

Q0

Q1

Q2

Q3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Asyn. Counters with MOD no. < 2n

 States may be skipped resulting in a truncated

sequence.

 Technique: force counter to recycle before going

through all of the states in the binary sequence.

 Example: Given the following circuit, determine the

counting sequence (and hence the modulus no.)

Q

Q

J

CLK

K
CLR

Q

Q

J

CLK

K
CLR

Q

Q

J

CLK

K
CLR

C B A

B

C

All J, K

inputs

are 1

(HIGH).

Asyn. Counters with MOD no. < 2n

 Example (cont’d):

Q

Q

J

CLK

K
CLR

Q

Q

J

CLK

K
CLR

Q

Q

J

CLK

K
CLR

C B A

B

C

All J, K

inputs

are 1

(HIGH).

A

B

C

1 2 3 4 5 6 7 8 9 10 11 12

Clock

NAND 1

Output 0

MOD-6 counter

produced by

clearing (a MOD-8

binary counter)

when count of six

(110) occurs.

Asyn. Counters with MOD no. < 2n

 Example (cont’d): Counting sequence of circuit (in
CBA order).

NAND 1
Output 0

1 2 3 4 5 6 7 8 9 10 11 12

Clock

A 0 1 0 1 0 1 0 1

B

C

111 000
001

110

101

100

010

011

Temporary

state
Counter is a MOD-6

counter.

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

Asyn. Counters with MOD no. < 2n

 Exercise: How to construct an asynchronous MOD-5

counter? MOD-7 counter? MOD-12 counter?

 Question: The following is a MOD-? counter?

Q J

Q K
CLR

C B A

C
D
E
F All J = K = 1.

Q J

Q K
CLR

Q J

Q K
CLR

Q J

Q K
CLR

Q J

Q K
CLR

Q J

Q K
CLR

DEF

Asyn. Counters with MOD no. < 2n

 Decade counters (or BCD counters) are counters
with 10 states (modulus-10) in their sequence.
They are commonly used in daily life (e.g.: utility
meters, odometers, etc.).

 Design an asynchronous decade counter.

D

CLK

HIGH

J Q

C

K

CLR

J Q

C

K

CLR

C
J Q

C

K

CLR

B
J Q

C

K

CLR

A

(A.C)'

Asyn. Counters with MOD no. < 2n

 Asynchronous decade/BCD counter (cont’d).

output

Clock
1 2 3 4 5 6 7 8 9 10 11

D 0 1 0 1 0 1 0 1 0 1 0

C 0 0 1 1 0 0 1 1 0 0 0

B 0 0 0 0 1 1 1 1 0 0 0

A 0 0 0 0 0 0 0 0 1 1 0

NAND

D

CLK

HIGH
J Q

C

K
CLR

K
CLR

J Q

C

C
J Q

C

K
CLR

B

K
CLR

J Q

C

A (A.C)'

Asynchronous Down Counters

 So far we are dealing with up counters. Down
counters, on the other hand, count downward from
a maximum value to zero, and repeat.

 Example: A 3-bit binary (MOD-23) down counter.

Q1Q0 J

C

K

J

C

K

J

C

K

Q2

CLK

1

Q

Q'

Q

Q'

Q

Q'

3-bit binary

up counter

3-bit binary

down counter

1

J Q1Q0

C

K

J

C

K

J

C

K

Q2

CLK

Q

Q'

Q

Q'

Q

Q'

Synchronous (Parallel) Counters

 Synchronous (parallel) counters: the flip-flops are

clocked at the same time by a common clock pulse.

 We can design these counters using the sequential

logic design process (covered in Lecture #12).

 Example: 2-bit synchronous binary counter (using T

flip-flops, or JK flip-flops with identical J,K inputs).

Next

state

Present

state

A1 A0 1 0A + A +

Flip-flop

inputs

TA1 TA0

0 0 0 1 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0100

1011

Synchronous (Parallel) Counters

 Example: 2-bit synchronous binary counter (using T

flip-flops, or JK flip-flops with identical J,K inputs).

Present Next Flip-flop

state state inputs

1 0A1

0
0

A0

0
1

A +

0
1

A +

1
0

TA1

0
1

TA0

1
1

TA1 = A0

TA0 = 1

1 0 1 1 0 1

1 1 0 0 1 1

1

A1A0 J

C

K

J

C

K

CLK

Q

Q'

Q

Q'

Synchronous (Parallel) Counters

 Example: 3-bit synchronous binary counter (using T

flip-flops, or JK flip-flops with identical J, K inputs).
Next
state

Present
state

A2 A1 A0 2 1 0A + A + A +

Flip-flop
inputs

TA2 TA1 TA0

TA2 = A1.A0

1

1

TA1 = A0 TA0 = 1

1 1

1 1

0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1
1 0 0 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

A1 A1 A1

A2 A2 A2

A0 A0 A0

1 1 1 1

1 1 1 1

Synchronous (Parallel) Counters

 Example: 3-bit synchronous binary counter (cont’d).

TA2 = A1.A0 TA1 = A0 TA0 = 1

1

A2

CP

A1 A0

Q

J K

Q

J K

Q

J K

Synchronous (Parallel) Counters

 Note that in a binary counter, the nth bit (shown

underlined) is always complemented whenever

011…11 100…00

or 111…11 000…00

 Hence, Xn is complemented whenever

Xn-1Xn-2 ... X1X0 = 11…11.

 As a result, if T flip-flops are used, then

TXn = Xn-1 . Xn-2 X1 . X0

Synchronous (Parallel) Counters

 Example: 4-bit synchronous binary counter.

TA3 = A2 . A1 . A0

TA2 = A1 . A0

TA1 = A0

TA0 = 1

1

A1A0 J

C

K

J

C

K

CLK

Q

Q'

Q

Q'

A2J

C

K

Q

Q'

A3J

C

K

Q

Q'

A1.A0 A2.A1.A0

Synchronous (Parallel) Counters

 Example: Synchronous decade/BCD counter.

Clock pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

0T = 1

T1 = Q3'.Q0

T2 = Q1.Q0

T3 = Q2.Q1.Q0 + Q3.Q0

10 (recycle) 0 0 0 0

Synchronous (Parallel) Counters

 Example: Synchronous decade/BCD counter
(cont’d).

T0 = 1

T1 = Q3'.Q0

T2 = Q1.Q0

T3 = Q2.Q1.Q0 + Q3.Q0

Q1

Q0

CLK

1 T

C

Q

Q'

Q2 Q3T

C

Q

Q'

T

C

Q

Q'

T

C

Q

Q'

Up/Down Synchronous Counters

 Up/down synchronous counter: a bidirectional

counter that is capable of counting either up or

down.

 An input (control) line Up/Down (or simply Up)

specifies the direction of counting.

 Up/Down = 1  Count upward

 Up/Down = 0  Count downward

Up/Down Synchronous Counters

 Example: A 3-bit up/down synchronous binary

counter.
Clock pulse Up Q2 Q1 Q0 Down

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6
7

1
1

1
1

0
1

TQ0 = 1

TQ1 = (Q0.Up) + (Q0'.Up')

TQ2 = (Q0.Q1.Up) + (Q0'. Q1'. Up')

Up counter

TQ0 = 1

TQ1 = Q0

TQ2 = Q0.Q1

Down counter

TQ0 = 1

TQ1 = Q0’

TQ2 = Q0’.Q1’

Up/Down Synchronous Counters

 Example: A 3-bit up/down synchronous binary

counter (cont’d).
TQ0 = 1

TQ1 = (Q0.Up) + (Q0'.Up')

TQ2 = (Q0.Q1.Up) + (Q0'. Q1'. Up')

Q1Q0

CLK

1 T

C

Q

Q'

T

C

Q

Q'

T

C

Q

Q'

Up

Q2

Designing Synchronous Counters

 Covered in Lecture #12.

 Example: A 3-bit Gray code

counter (using JK flip-flops).

100

000
001

101

111

110

011

010

Present

state

Flip-flop

inputs

Next

state

2 1 0Q2 Q1 Q0 Q + Q + Q + JQ2 KQ2 JQ1 KQ1 JQ0 KQ0

0 0 0 0 0 1 0 X 0 X 1 X
0 0 1 0 1 1 0 X 1 X X 0
0 1 0 1 1 0 1 X X 0 0 X
0 1 1 0 1 0 0 X X 0 X 1
1 0 0 0 0 0 X 1 0 X 0 X
1 0 1 1 0 0 X 0 0 X X 1
1 1 0 1 1 1 X 0 X 0 1 X

1 1 1 1 0 1 X 0 X 1 X 0

Designing Synchronous Counters

 3-bit Gray code counter: flip-flop inputs.

0

1

00 01 11 10

1

X X X X

Q2

Q1Q0

JQ2 = Q1.Q0'

0

1

00 01 11 10

X X X X

1

Q2

Q1Q0

KQ2 = Q1'.Q0'

0

1

00 01 11 10Q2

Q Q1 0

1 X X

X X

JQ1 = Q2'.Q0

0

1

00 01 11 10

X X

X X 1

Q2

Q1Q0

KQ1 = Q2.Q0

0

1

00 01 11 10Q2

Q Q1 0

X

XX1

X 1

00 01 11 10Q2

JQ0 = Q2.Q1 + Q2'.Q1'

= (Q2  Q1)'

Q1Q0

X

X 1 X0

1 X 1

KQ0 = Q2.Q1' + Q2'.Q1

= Q2  Q1

Designing Synchronous Counters

 3-bit Gray code counter: logic diagram.

JQ2 = Q1.Q0' JQ1 = Q2'.Q0 JQ0 = (Q2  Q1)'

KQ2 = Q1'.Q0' KQ1 = Q2.Q0 KQ0 = Q2  Q1

Q1Q0

CLK

Q2
J Q

C

K Q'

J Q

C

K Q'

J Q

C

K Q'
Q2

'

Q0

'

Q1

'

Counters with Parallel Load

 Counters could be augmented with parallel load

capability for the following purposes:

 To start at a different state

 To count a different sequence

 As more sophisticated register with increment/decrement

functionality.

Counters with Parallel Load

Count = 1

Load = 0

CPI4 I3 I2 I1

Count = 1

Clear = 1

CP

Inputs = 0

Load

(a) Binary states 0,1,2,3,4,5.

I4 I3 I2 I1

 Different ways of getting a MOD-6 counter:

A4 A3 A2 A1 A4 A3 A2 A1

Clear

Inputs have no effect

(b) Binary states 0,1,2,3,4,5.

I4 I3 I2 I1

Count = 1

Clear = 1

CP

A4 A3 A2 A1

Load

0 0 1 1

(d) Binary states 3,4,5,6,7,8.

I4 I3 I2 I1

Count = 1

Clear = 1

CP

A4 A3 A2 A1

Load

Carry-out

1 0 1 0

(c) Binary states 10,11,12,13,14,15.

Counters with Parallel Load

 4-bit counter with

parallel load.

Clear CP Load Count Function

0 X X X Clear to 0
1 X 0 0 No change
1  1 X Load inputs

1  0 1 Next state

Introduction: Registers

 An n-bit register has a group of n flip-flops and some

logic gates and is capable of storing n bits of

information.

 The flip-flops store the information while the gates

control when and how new information is transferred

into the register.

 Some functions of register:

 retrieve data from register

 store/load new data into register (serial or parallel)

 shift the data within register (left or right)

Registers With Parallel Load

 Instead of loading the register at every clock pulse,

we may want to control when to load.

 Loading a register: transfer new information into the

register. Requires a load control input.

 Parallel loading: all bits are loaded simultaneously.

Registers With Parallel Load

A0
D Q

Load

I0

A1
D Q

A2
D Q

A3
D Q

CLK

CLEAR

I1

I2

I3

Load'.A0 + Load. I0

Using Registers to implement

Sequential Circuits

Register Combin-

ational

circuit

Clock

Inputs

 A sequential circuit may consist of a register

(memory) and a combinational circuit.
Next-state value

Outputs

 The external inputs and present states of the register

determine the next states of the register and the

external outputs, through the combinational circuit.

 The combinational circuit may be implemented by

any of the methods covered in MSI components and

Programmable Logic Devices.

Using Registers to implement

Sequential Circuits

 Example 1:
A1

+ =  m(4,6) = A1.x'

A2
+ =  m(1,2,5,6) = A2.x' + A2'.x = A2  x

y =  m(3,7) = A2.x

Present

state

A1 A2 1 2A + A +

Next

Input State Output

x y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 1 0 0
1 0 1 0 1 0
1 1 0 1 1 0

1 1 1 0 0 1

A1

A2

x y

A1.x'

A2x

Using Registers to implement

Sequential Circuits

 Example 2: Repeat example 1, but use a ROM.

Address
1 2 3

Outputs
1 2 3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 1 0 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 0 0 1

ROM truth table

A1

A2

x y

8 x 3

ROM

Shift Registers

 Another function of a register, besides storage, is to

provide for data movements.

 Each stage (flip-flop) in a shift register represents

one bit of storage, and the shifting capability of a

register permits the movement of data from stage to

stage within the register, or into or out of the register

upon application of clock pulses.

Shift Registers

 Basic data movement in shift registers (four bits are
used for illustration).

Data in Data out

(a) Serial in/shift right/serial out

Data out Data in

(b) Serial in/shift left/serial out

Data in

Data out

(c) Parallel in/serial out

Data out

(d) Serial in/parallel out

Data in
Data in

Data out

(e) Parallel in /

parallel out

(f) Rotate right (g) Rotate left

Serial In/Serial Out Shift Registers

 Accepts data serially – one bit at a time – and also
produces output serially.

Q0

CLK

Q
Q1 Q2 Q3Serial data

input D

C

Serial data

output
D Q

C

D Q

C

D Q

C

Serial In/Serial Out Shift Registers

 Application: Serial transfer of data from one register
to another.

Shift register A Shift register B
SI SO SI SO

Clock

Shift control

CP

Wordtime

T1 T2 T3 T4

CP

Clock

Shift

control

Serial In/Serial Out Shift Registers

 Serial-transfer example.

Timing Pulse Shift register A Shift register B Serial output of B

Initial value 1 0 1 1 0 0 1 0 0

After T1 1 1 0 1 1 0 0 1 1

After T2 1 1 1 0 1 1 0 0 0

After T3 0 1 1 1 0 1 1 0 0

After T4 1 0 1 1 1 0 1 1 1

Serial In/Parallel Out Shift Registers

 Accepts data serially.

 Outputs of all stages are available simultaneously.

Q0

CLK

D Q

C

Q1

D Q

C

Q2

D Q

C

Q3

D Q

C

Data input

D SRG 4

C

Data input

CLK

Q0 Q1 Q2 Q3

Logic symbol

Parallel In/Serial Out Shift Registers

D Q

C

D Q

C

D Q

C

D Q

C

Q0 Q1 Q2 Q

 Bits are entered simultaneously, but output is serial.

Data input

D0 D1 D2 D3

SHIFT/LOAD

Serial

data

3 out

CLK

SHIFT.Q0 + SHIFT'.D1

Parallel In/Serial Out Shift Registers

 Bits are entered simultaneously, but output is serial.

Logic symbol

SHIFT/LOAD

CLK

Data in

D0 D1 D2 D3

SRG 4

C
Serial data out

End of segment

