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Lecture 13: Sequential Logic 
Counters and Registers

Counters

 Introduction: Counters

 Asynchronous (Ripple) Counters

 Asynchronous Counters with MOD number < 2n

 Asynchronous Down Counters

 Cascading Asynchronous Counters



Lecture 13: Sequential Logic 
Counters and Registers

 Synchronous (Parallel) Counters

 Up/Down Synchronous Counters

 Designing Synchronous Counters

 Decoding A Counter

 Counters with Parallel Load



Lecture 13: Sequential Logic 
Counters and Registers

Registers

 Introduction: Registers

 Simple Registers

 Registers with Parallel Load

 Using Registers to implement Sequential Circuits

 Shift Registers

 Serial In/Serial Out Shift Registers

 Serial In/Parallel Out Shift Registers

 Parallel In/Serial Out Shift Registers

 Parallel In/Parallel Out Shift Registers



Lecture 13: Sequential Logic 
Counters and Registers

 Bidirectional Shift Registers

 An Application – Serial Addition

 Shift Register Counters

 Ring Counters

 Johnson Counters

 Random-Access Memory (RAM)



Introduction: Counters

 Counters are circuits that cycle through a specified 

number of states.

 Two types of counters:

 synchronous (parallel) counters

 asynchronous (ripple) counters

 Ripple counters allow some flip-flop outputs to be

used as a source of clock for other flip-flops.

 Synchronous counters apply the same clock to all 

flip-flops.



Asynchronous (Ripple) Counters

 Asynchronous counters: the flip-flops do not change 
states at exactly the same time as they do not have a 
common clock pulse.

 Also known as ripple counters, as the input clock 
pulse “ripples” through the counter – cumulative 
delay is a drawback.

 n flip-flops  a MOD (modulus) 2n counter. (Note: A
MOD-x counter cycles through x states.)

 Output of the last flip-flop (MSB) divides the input 
clock frequency by the MOD number of the counter, 
hence a counter is also a frequency divider.



Asynchronous (Ripple) Counters

 Example: 2-bit ripple binary counter.

 Output of one flip-flop is connected to the clock input 

of the next more-significant flip-flop.
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Asynchronous (Ripple) Counters

 Example: 3-bit ripple binary counter.
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Asynchronous (Ripple) Counters

 Propagation delays in an asynchronous (ripple-
clocked) binary counter.

 If the accumulated delay is greater than the clock
pulse, some counter states may be misrepresented!
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Asynchronous (Ripple) Counters

 Example: 4-bit ripple binary counter (negative-edge 

triggered).
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Asyn. Counters with MOD no. < 2n

 States may be skipped resulting in a truncated 

sequence.

 Technique: force counter to recycle before going

through all of the states in the binary sequence.

 Example: Given the following circuit, determine the 

counting sequence (and hence the modulus no.)
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Asyn. Counters with MOD no. < 2n

 Example (cont’d):
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Asyn. Counters with MOD no. < 2n

 Example (cont’d): Counting sequence of circuit (in
CBA order).

NAND 1
Output 0

1 2 3 4 5 6 7 8 9 10 11 12

Clock

A 0 1 0 1 0 1 0 1

B

C

111 000
001

110

101

100

010

011

Temporary 

state
Counter is a MOD-6

counter.

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0



Asyn. Counters with MOD no. < 2n

 Exercise: How to construct an asynchronous MOD-5 

counter? MOD-7 counter? MOD-12 counter?

 Question: The following is a MOD-? counter?

Q J

Q K
CLR
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Asyn. Counters with MOD no. < 2n

 Decade counters (or BCD counters) are counters 
with 10 states (modulus-10) in their sequence. 
They are commonly used in daily life (e.g.: utility 
meters, odometers, etc.).

 Design an asynchronous decade counter.
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Asyn. Counters with MOD no. < 2n

 Asynchronous decade/BCD counter (cont’d).

output

Clock
1 2 3 4 5 6 7 8 9 10 11

D 0 1 0 1 0 1 0 1 0 1 0

C 0 0 1 1 0 0 1 1 0 0 0

B 0 0 0 0 1 1 1 1 0 0 0

A 0 0 0 0 0 0 0 0 1 1 0
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Asynchronous Down Counters

 So far we are dealing with up counters. Down 
counters, on the other hand, count downward from 
a maximum value to zero, and repeat.

 Example: A 3-bit binary (MOD-23) down counter.
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Synchronous (Parallel) Counters

 Synchronous (parallel) counters: the flip-flops are 

clocked at the same time by a common clock pulse.

 We can design these counters using the sequential

logic design process (covered in Lecture #12).

 Example: 2-bit synchronous binary counter (using T 

flip-flops, or JK flip-flops with identical J,K inputs).

Next 

state

Present 

state

A1 A0 1 0A + A +

Flip-flop 

inputs 

TA1 TA0

0 0 0 1 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0100

1011



Synchronous (Parallel) Counters

 Example: 2-bit synchronous binary counter (using T 

flip-flops, or JK flip-flops with identical J,K inputs).
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Synchronous (Parallel) Counters

 Example: 3-bit synchronous binary counter (using T 

flip-flops, or JK flip-flops with identical J, K inputs).
Next
state

Present
state

A2 A1 A0 2 1 0A + A + A +

Flip-flop
inputs

TA2 TA1 TA0

TA2 = A1.A0

1

1

TA1 = A0 TA0 = 1

1 1

1 1

0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1
1 0 0 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

A1 A1 A1

A2 A2 A2

A0 A0 A0

1 1 1 1

1 1 1 1



Synchronous (Parallel) Counters

 Example: 3-bit synchronous binary counter (cont’d).

TA2 = A1.A0 TA1 = A0 TA0 = 1

1

A2

CP

A1 A0

Q

J K

Q

J K

Q

J K



Synchronous (Parallel) Counters

 Note that in a binary counter, the nth bit (shown 

underlined) is always complemented whenever

011…11 100…00

or 111…11 000…00

 Hence, Xn is complemented whenever 

Xn-1Xn-2 ... X1X0 = 11…11.

 As a result, if T flip-flops are used, then 

TXn = Xn-1 . Xn-2 . ... . X1 . X0



Synchronous (Parallel) Counters

 Example: 4-bit synchronous binary counter.

TA3 = A2 . A1 . A0

TA2 = A1 . A0

TA1 = A0 

TA0 = 1
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Synchronous (Parallel) Counters

 Example: Synchronous decade/BCD counter.

Clock pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

0T = 1

T1 = Q3'.Q0 

T2 = Q1.Q0

T3 = Q2.Q1.Q0 + Q3.Q0

10 (recycle) 0 0 0 0



Synchronous (Parallel) Counters

 Example: Synchronous decade/BCD counter
(cont’d).

T0 = 1

T1 = Q3'.Q0 

T2 = Q1.Q0

T3 = Q2.Q1.Q0 + Q3.Q0
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Up/Down Synchronous Counters

 Up/down synchronous counter: a bidirectional 

counter that is capable of counting either up or 

down.

 An input (control) line Up/Down (or simply Up) 

specifies the direction of counting.

 Up/Down = 1  Count upward

 Up/Down = 0  Count downward



Up/Down Synchronous Counters

 Example: A 3-bit up/down synchronous binary 

counter.
Clock pulse Up Q2 Q1 Q0 Down

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6
7

1
1

1
1

0
1

TQ0 = 1

TQ1 = (Q0.Up) + (Q0'.Up' )

TQ2 = ( Q0.Q1.Up ) + (Q0'. Q1'. Up' )

Up counter 

TQ0 = 1

TQ1 = Q0 

TQ2 = Q0.Q1

Down counter

TQ0 = 1

TQ1 = Q0’ 

TQ2 = Q0’.Q1’



Up/Down Synchronous Counters

 Example: A 3-bit up/down synchronous binary

counter (cont’d).
TQ0 = 1

TQ1 = (Q0.Up) + (Q0'.Up' )

TQ2 = ( Q0.Q1.Up ) + (Q0'. Q1'. Up' )

Q1Q0

CLK

1 T

C

Q

Q'

T

C

Q

Q'

T

C

Q

Q'

Up

Q2



Designing Synchronous Counters

 Covered in Lecture #12.

 Example: A 3-bit Gray code 

counter (using JK flip-flops).

100

000
001

101

111

110

011

010

Present

state

Flip-flop

inputs

Next

state

2 1 0Q2 Q1 Q0 Q + Q + Q + JQ2 KQ2 JQ1 KQ1 JQ0 KQ0

0 0 0 0 0 1 0 X 0 X 1 X
0 0 1 0 1 1 0 X 1 X X 0
0 1 0 1 1 0 1 X X 0 0 X
0 1 1 0 1 0 0 X X 0 X 1
1 0 0 0 0 0 X 1 0 X 0 X
1 0 1 1 0 0 X 0 0 X X 1
1 1 0 1 1 1 X 0 X 0 1 X

1 1 1 1 0 1 X 0 X 1 X 0



Designing Synchronous Counters

 3-bit Gray code counter: flip-flop inputs.
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X

X 1 X0

1 X 1

KQ0 = Q2.Q1' + Q2'.Q1

= Q2  Q1



Designing Synchronous Counters

 3-bit Gray code counter: logic diagram.

JQ2 = Q1.Q0' JQ1 = Q2'.Q0 JQ0 = (Q2  Q1)'

KQ2 = Q1'.Q0' KQ1 = Q2.Q0 KQ0 = Q2  Q1

Q1Q0

CLK

Q2
J Q

C

K Q'

J Q

C

K Q'

J Q

C

K Q'
Q2

'

Q0

'

Q1 

'



Counters with Parallel Load

 Counters could be augmented with parallel load 

capability for the following purposes:

 To start at a different state

 To count a different sequence

 As more sophisticated register with increment/decrement 

functionality.



Counters with Parallel Load

Count = 1

Load = 0

CPI4 I3 I2 I1

Count = 1

Clear = 1

CP

Inputs = 0

Load

(a) Binary states 0,1,2,3,4,5.

I4 I3 I2 I1

 Different ways of getting a MOD-6 counter:

A4 A3 A2 A1 A4 A3 A2 A1

Clear

Inputs have no effect

(b) Binary states 0,1,2,3,4,5.

I4 I3 I2 I1

Count = 1

Clear = 1

CP

A4 A3 A2 A1

Load

0 0 1 1

(d) Binary states 3,4,5,6,7,8.

I4 I3 I2 I1

Count = 1

Clear = 1

CP

A4 A3 A2 A1

Load

Carry-out

1 0 1 0

(c) Binary states 10,11,12,13,14,15.



Counters with Parallel Load

 4-bit counter with 

parallel load.

Clear CP Load Count Function

0 X X X Clear to 0
1 X 0 0 No change
1  1 X Load inputs

1  0 1 Next state



Introduction: Registers

 An n-bit register has a group of n flip-flops and some 

logic gates and is capable of storing n bits of 

information.

 The flip-flops store the information while the gates 

control when and how new information is transferred 

into the register.

 Some functions of register:

 retrieve data from register

 store/load new data into register (serial or parallel)

 shift the data within register (left or right)



Registers With Parallel Load

 Instead of loading the register at every clock pulse, 

we may want to control when to load.

 Loading a register: transfer new information into the

register. Requires a load control input.

 Parallel loading: all bits are loaded simultaneously.



Registers With Parallel Load

A0
D Q

Load

I0

A1
D Q

A2
D Q

A3
D Q

CLK 

CLEAR

I1

I2

I3

Load'.A0 + Load. I0



Using Registers to implement 

Sequential Circuits

Register Combin-

ational 

circuit

Clock

Inputs

 A sequential circuit may consist of a register

(memory) and a combinational circuit.
Next-state value

Outputs

 The external inputs and present states of the register 

determine the next states of the register and the 

external outputs, through the combinational circuit.

 The combinational circuit may be implemented by 

any of the methods covered in MSI components and 

Programmable Logic Devices.



Using Registers to implement 

Sequential Circuits

 Example 1:
A1

+ =  m(4,6) = A1.x'

A2
+ =  m(1,2,5,6) = A2.x' + A2'.x = A2  x

y =  m(3,7) = A2.x

Present

state

A1 A2 1 2A + A +

Next

Input State Output

x y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 1 0 0
1 0 1 0 1 0
1 1 0 1 1 0

1 1 1 0 0 1

A1

A2

x y

A1.x'

A2x



Using Registers to implement 

Sequential Circuits

 Example 2: Repeat example 1, but use a ROM.

Address
1 2 3

Outputs
1 2 3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 1 0 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 0 0 1

ROM truth table

A1

A2

x y

8 x 3

ROM



Shift Registers

 Another function of a register, besides storage, is to 

provide for data movements.

 Each stage (flip-flop) in a shift register represents 

one bit of storage, and the shifting capability of a 

register permits the movement of data from stage to 

stage within the register, or into or out of the register 

upon application of clock pulses.



Shift Registers

 Basic data movement in shift registers (four bits are 
used for illustration).

Data in Data out

(a) Serial in/shift right/serial out

Data out Data in

(b) Serial in/shift left/serial out

Data in

Data out

(c) Parallel in/serial out

Data out

(d) Serial in/parallel out

Data in
Data in

Data out

(e) Parallel in /

parallel out

(f) Rotate right (g) Rotate left



Serial In/Serial Out Shift Registers

 Accepts data serially – one bit at a time – and also 
produces output serially.

Q0

CLK

Q
Q1 Q2 Q3Serial data

input D

C

Serial data 

output
D Q

C

D Q

C

D Q

C



Serial In/Serial Out Shift Registers

 Application: Serial transfer of data from one register 
to another.

Shift register A Shift register B
SI SO SI SO

Clock

Shift control

CP

Wordtime

T1 T2 T3 T4

CP

Clock

Shift

control



Serial In/Serial Out Shift Registers

 Serial-transfer example.

Timing Pulse Shift register A Shift register B Serial output of B

Initial value 1 0 1 1 0 0 1 0 0

After T1 1 1 0 1 1 0 0 1 1

After T2 1 1 1 0 1 1 0 0 0

After T3 0 1 1 1 0 1 1 0 0

After T4 1 0 1 1 1 0 1 1 1



Serial In/Parallel Out Shift Registers

 Accepts data serially.

 Outputs of all stages are available simultaneously.

Q0

CLK

D Q

C

Q1

D Q

C

Q2

D Q

C

Q3

D Q

C

Data input

D SRG 4

C

Data input

CLK

Q0 Q1 Q2 Q3

Logic symbol



Parallel In/Serial Out Shift Registers

D Q

C

D Q

C

D Q

C

D Q

C

Q0 Q1 Q2 Q

 Bits are entered simultaneously, but output is serial.

Data input

D0 D1 D2 D3

SHIFT/LOAD

Serial 

data

3 out

CLK

SHIFT.Q0 + SHIFT'.D1



Parallel In/Serial Out Shift Registers

 Bits are entered simultaneously, but output is serial.

Logic symbol

SHIFT/LOAD

CLK

Data in

D0 D1 D2 D3

SRG 4

C
Serial data out



End of segment


