B.SC., PHYSICS SYLLABUS

FROM THE ACADEMIC YEAR 2023-2024

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

B.Sc., PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the undergraduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provides a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

FKANLEWUKK FUK						
	UNDERGRADUATE EDUCATION					
Programme	B.Sc., Physics					
Programme						
Code						
Duration	3 years [UG]					
Programme	PO1: Disciplinary knowledge:					
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding					
(These are	of one or more disciplines that form a part of an undergraduate programme					
mereguidelines	of study					
. Faculty can	PO2: Communication Skills:					
create POs	Ability to express thoughts and ideas effectively in writing and orally					
based on their	communicate with others using appropriate media; confidently share one's					
curriculum or	views and express herself/himself; demonstrate the ability to listen					
adopt from	carefully; read and write analytically and present complex information in					
UGC or the	a clear and concise manner to different groups.					
University for	PO3: Critical thinking:					
their	Capability to apply the analytic thought to a body of knowledge; analyse					
Programme)	and evaluate the proofs, arguments, claims, beliefs on the basis of					
	empirical evidences; identify relevant assumptions or implications;					
	formulate coherent arguments; critically evaluate practices, policies and					
	theories by following scientific approach.					
	PO4: Problem solving:					

TANSCHE DECLI ATIONS ON LEADNING OUTCOMES BASED CUDDICULUM

competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations. **PO5:** Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. **PO6: Research-related skills**: A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation **PO7: Cooperation/Team work:** Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team **PO8:** Scientific reasoning: Ability analyse, interpret and draw conclusions to from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective. **PO9: Reflective thinking**: Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society. **PO10 Information/digital literacy:** Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data. **PO 11 Self-directed learning**: Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion. **PO 12 Multicultural competence:** Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups. PO 13: Moral and ethical awareness/reasoning: Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work. PO 14: Leadership readiness/qualities:

Capacity to extrapolate from what one has learned and apply their

	Capability for mapping out the tasks of a team or an organization, and
	setting direction, formulating an inspiring vision, building a team who can
	help achieve the vision, motivating and inspiring team members to engage
	with that vision, and using management skills to guide people to the right
	destination, in a smooth and efficient way.
	PO 15: Lifelong learning:
	Ability to acquire knowledge and skills, including "learning how to learn",
	that are necessary for participating in learning activities throughout life,
	through self-paced and self-directed learning aimed at personal
	development, meeting economic, social and cultural objectives, and
	adapting to changing trades and demands of work place through
	knowledge/skill development/reskilling.
Programme	PSO1: Placement:
Specific	To prepare the students who will demonstrate respectful engagement with
Outcomes:	others' ideas, behaviors, and beliefs and apply diverse frames of reference
	to decisions and actions.
(These are	PSO 2: Entrepreneur:
mere	To create effective entrepreneurs by enhancing their critical thinking,
guidelines.	problem solving, decision making and leadership skill that will facilitate
Faculty can	start-ups and high potential organizations
create POs	PSO3: Research and Development:
based on their	Design and implement HR systems and practices grounded in research that
curriculum or	comply with employment laws, leading the organization towards growth
adopt from	and development.
UGC or	PSO4: Contribution to Business World:
University for	To produce employable, ethical and innovative professionals to sustain in
their	the dynamic business world.
Programme)	PSO 5: Contribution to the Society:
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit

Sem I	Credit	Н	Sem II	Credit	Н	Sem III	Credit	Н	Sem IV	Credit	Н	Sem V	Credit	Н	Sem VI	Credit	Н
Part 1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	5.1 Core Course – \CC IX	4	5	6.1 Core Course – CC XIII	4	6
Part.2 English	3	6	Part2 English	3	6	Part2 English	3	6	Part2 English	3	6	5.2 Core Course – CC X	4	5	6.2 Core Course – CC XIV	4	6
1.3 Core Course – CC I	5	5	23 Core Course – CC III	5	5	3.3 Core Course – CC V	5	5	4.3 Core Course – CC VII Core Industry Module	5	5	5. 3.Core Course CC -XI	4	5	6.3 Core Course – CC XV	4	6
1.4 Core Course – CC II	5	5	2.4 Core Course – CC IV	5	5	3.4 Core Course – CC VI	5	5	4.4 Core Course – CC VIII	5	5	5. 4.Core Course –/ Project with viva- voce CC -XII	4	5	6.4 Elective -VII Generic/ Discipline Specific	3	5
1.5 Elective I Generic/ Discipline Specific	3	4	2.5 Elective II Generic/ Discipline Specific	3	4	3.5 Elective III Generic/ Discipline Specific	3	4	4.5 Elective IV Generic/ Discipline Specific	3	3	5.5 Elective V Generic/ Discipline Specific	3	4	6.5 Elective VIII Generic/ Discipline Specific	3	5
1.6 Skill Enhancement Course SEC-1	2	2	2.6 Skill Enhancement Course SEC-2	2	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)	1	1	4.6 Skill Enhancement Course SEC-6	2	2	5.6 Elective VI Generic/ Discipline Specific	3	4	6.6 Extension Activity	1	-
1.7 Skill Enhancement -(Foundation Course)	2	2	2.7 Skill Enhancement Course – SEC-3	2	2	3.7 Skill Enhancement Course SEC-5	2	2	4.7 Skill Enhancement Course SEC- 7	2	2	5.7 Value Education	2	2	6.7 Professional Competency Skill	2	2
						3.8 E.V.S.	-	1	4.8 E.V.S	2	1	5.8 Summer Internship /Industrial Training	2				
	23	30		23	30		22	30		25	30		26	30		21	30
							Total –	140 (Credits								

Credit Distribution for UG Programmes

	3 – Year UG Programme B.Sc., Physic	s Credit Di	stribution	
Part	Details	No. of	Total	Part
		Papers	Credits	Credits
Part-I	Language (3 Credits)	4	12	12
Part-II	English (3 Credits)	4	12	12
	Core Theory (4 Credits)	8	32	
	Core Theory (3 Credits)	2	6	
Dort III	Allied Theory (4 Credits)	2	8	76
Falt-III	Allied Theory (3 Credits)	2	6	70
	Core Practical (3 Credits)	6	18	
	Allied Practical (3 Credits)	2	6	
	Foundation Course (2 Credits)	1	2	
	Skills Enhancement Course (SEC) NME	0	16	
	(2 Credits)	0	10	
	Ability Enhancement Compulsory Course	1	8	
Part-IV	(AECCC) Soft Skills (2 Credits)	4	0	39
	Elective Core (2 Credits)	4	8	
	Summer Internship (1 Credits)	1	1	
	EVS (2 Credit)	1	2	
	Value Education (2 Credits)	1	2	
	Extension Activity			
Part-V	(NSS/NCC/YRC/Physical Education) (1	1	1	1
	Credit)			
		51	140	140

Consolidated Semester wise and Component wise Credit Distribution

Parts	Sem-I	Sem-II	Sem-III	Sem-IV	Sem-V	Sem-VI	Total Credits
Part-I	3	3	3	3	-	-	12
Part-II	3	3	3	3	-	-	12
Part-III	11	11	13	13	18	18	84
Part-IV	6	6	6	8	1	4	31
Part-V	-	-	-	-	-	1	1
Total	23	23	25	27	19	23	140

Credit Distribution for B.Sc., Physics Programme, Courses with Laboratory Hours First Year Semester-I

Part	List of Courses	Credit	No. of		
			Hours		
Part-I	Language	3	6		
Part-II	English	3	6		
Part-III	Core Theory 1 – Properties of Matter and Acoustics	5	5		

	Core Practical 1 – Physics Practical 1		3
	Allied Theory 1 – Allied Mathematics 1	5	6
	Skill Enhancement Course SEC-1 (NME) /Physics of everyday	2	2
Part-IV	life		
	Foundation Course	2	2
		20	30

Semester-II

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language and	3	6
Part-II	English	3	6
	Core Theory 2 – Heat, Thermodynamics and Statistical Physics	5	5
Part-III	Core Practical 1– Physics Practical 1	3	3
Part-III	Allied Theory 2 – Allied Mathematics 2	5	6
	Skill Enhancement Course -SEC-2 (NME) Space Physics	2	2
Part-IV	Skill Enhancement Course -SEC-3 (Discipline/Subject	2	2
	Specific) C-Programming		
		23	30

Second Year - Semester-III

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language	3	6
Part-II	English	3	6
	Core Theory 3 – Mechanics	5	5
	Core Practical 2 – Physics Practical 2	-	3
Dort III	Allied Theory 1 – Allied Chemistry 1/ Applied Electronics	4	4
F all-111	theory-I		
	Allied Practical 1 – Allied Chemistry Practical 1/ Applied	-	2
	Electronics Practical-I		
	Skill Enhancement Course -SEC-4 (Entrepreneurial Based) –	2	2
Part-IV	Biomedical Instrumentation		
	Skill Enhancement Course -SEC-5 (Discipline/Subject	2	2
	Specific) Electrical Wiring		
		19	30

Semester-IV

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language	3	6
Part-II	English	3	6
Part-III	Core Theory 4 – Optics and Laser Physics	5	5
	Core Practical 2 – Physics Practical 2	3	3

	Allied Theory 2 – Allied Chemistry 2/Applied Electronics	4	4
	theory- II		
	Allied Practical 1 – Allied Chemistry Practical 2/Applied	3	3
	Electronics Practical-I		
	Skill Enhancement Course -SEC-6 (Discipline/Subject	2	2
Part-IV	Specific) Energy Physics		
	Skill Enhancement Course -SEC-7 (Discipline/Subject	2	2
	Specific) Material Science/ Naan Muthualvan Course		
		24	30

Third Year

Semester-V

Part	List of Courses	Credit	No. of
		5	nours
Part-III	Core Theory 5 – Electricity, Magnetism and Electromagnetism	5	5
	Core Theory 6 – Atomic and Nuclear Physics	5	5
	Core Theory 7 – Analog and Communication Electronics	5	5
	Core Practical 3 – General Practical	-	3
	Core Practical 4 – Analog Electronics Practical		2
	Core Practical 5 – Digital Electronics Practical		2
	Elective Course-1 Mathematical Physics	4	4
Part-IV	Internship / Industrial Training (Carried out in II Year Summer	1	-
	Vocation) (30 Hours)		
	EVS	2	2
	Ability Enhancement Compulsory Course (AECC)-3 /	2	2
	Employability Skill/ Naan Muthalvan Course		
		24	30

Semester – VI

Part	List of Courses	Credit	No. of
			Hours
	Core Theory 8 – Quantum Mechanics and	5	5
Part-III	Core Theory 9 – Solid State Physics	4	5
	Core Theory 10 – Digital Electronics and Microprocessor 8085	4	5
	Core Practical 6 – General Practical	3	3
	Core Practical 4 – Analog Electronics Practical	3	2
	Core Practical 5 – Digital Electronics Practical	3	2
	Elective Course -2 Nanoscience and Nano Technology/Project	2	4
Part-IV	Skill Enhancement Course -SEC-8 (Discipline/Subject	2	2
	Specific) Communication Physics		
	Value Education	2	2
Part-V	Extension Activity, NSS/NCC/YRC/Physical Education	1	-
	(Outside College Hours)		
		30	30

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS
CREDITS	2
COURSE	To help students get an overview of Physics before learning their
OBJECTIVES	core courses. To serve as a bridge between the school curriculum
	and the degree programme.

At the end of the course, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSE OUTCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

COURSE	FIRST SEMESTER –CORE THEORY 1
COURSETITLE	PROPERTIES OF MATTER AND ACOUSTICS
CREDITS	4
COURSE	Study of the properties of matter leads to information which is of
OBJECTIVES	practical value to both the physicist and the engineers. It gives us
	information about the internal forces which act between the
	constituent parts of the substance. Students who undergo this course
	are successfully bound to get a better insight and understanding of the
	subject.

At the end of the course, the student will be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity					
		and working of torsion pendulum.					
	CO2	Able to appreciate concept of bending of beams and analyze					
		the expression, quantify and understand nature of materials.					
	CO3	Explain the surface tension and viscosity of fluid and support					
		the interesting phenomena associated with liquid surface, soap					
		films provide an analogue solution to many engineering					
COURSE		problems.					
	CO4	Analyze simple harmonic motions mathematically and apply					
OUTCOMES		them. Understand the concept of resonance and use it to					
		evaluate the frequency of vibration. Set up experiment to					
		evaluate frequency of ac mains					
	CO5	Understand the concept of acoustics, importance of					
		constructing buildings with good acoustics.					
		Able to apply their knowledge of ultrasonics in real life,					
		especially in medical field and assimilate different methods of					
		production of ultrasonic waves					

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	2	2	3	2	3
CO2	2	3	3	3	2	2	3	2	3	3
CO3	3	2	3	2	3	3	2	3	3	3
CO4	3	3	3	3	3	2	3	2	2	2
CO5	2	2	3	3	2	3	3	3	3	2

COURSE	SECOND SEMESTER-CORE PRACTICAL 1
COURSETITLE	PRACTICAL 1
CREDITS	3
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseuille's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

	CO1	Apply the theoretical concepts in Properties of matter, Heat & Thermodynamics, electricity and Electromagnetism related experiments
COURSE	CO2	Draw the circuit diagram /experimental set up with tabular column/model graph andwrite the formula to calculate the required physical parameters.
OUTCOMES	CO3	Execute the technical skills in handling the equipment and observe the requiredmeasurements related to the experiment.
	CO4	Calculate the necessary parameters using the formula/graph and complete the recordWork
	CO5	Analyze the accuracy of the results obtained and compare it with the theoretical value.

MAPPING WITH PROGRAM OUT COMES:

	PO1		PO2	PO3		PO4		PO5	PO6	PO7
CO1	3	2	1	3	-	-		-	-	2
CO2	3	3	3	3	-	2	-	-	-	
CO3	3	3	3	3	-	2	-		3	-
CO4	3	3	3	3	3	2	-		2	3
CO5	2	2	2	2	3	3	2	2	2	3

COURSE	SECOND SEMESTER – CORE THEORY 2
COURSETITLE	HEAT, THERMODYNAMICS and STATISTICAL PHYSICS
CREDITS	4
COURSE	The course focuses to understand a basic in conversion of
OBJECTIVES	temperature in Celsius, Kelvin and Fahrenheit scales. Practical
	exhibition and explanation of transmission of heat in good and bad
	conductor. Relate the laws of thermodynamics, entropy in everyday
	life and explore the knowledge of statistical mechanics and its
	relation

At the end of the course, the student will be able to:

	CO1	Acquires knowledge on how to distinguish between
		temperature and heat. Introduce him/her to the field of
		thermometry and explain practical measurements of high
		temperature as well as low temperature physics. Student
COURSE		identifies the relationship between heat capacity, specific heat
OUTCOMES		capacity. The study of Low temperature Physics sets the basis
		for the students to understand cryogenics, superconductivity,
		superfluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the
		implications of the laws of Thermodynamics in diesel and
		petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz
		efficiency by problems. Gets an insight into thermodynamic
		properties like enthalpy, entropy
	CO4	Study the process of thermal conductivity and apply it to good
		and bad conductors. Quantify different parameters related to
		heat, relate them with various physical parameters and analyse
		them
	CO5	Interpret classical statistics concepts such as phase space,
		ensemble, Maxwell-Boltzmann distribution law. Develop the
		statistical interpretation of Bose-Einstein and Fermi-Dirac .
		Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	3	2	3	3	3	2	2	3	2

COURSE	THIRD SEMESTER – CORE
COURSETITLE	MECHANICS
CREDITS	4
COURSE	This course allows the students: To have a basic understanding of
OBJECTIVES	the laws and principles of mechanics; To apply the concepts of
	forces existing in the system; To understand the forces of physics in
	everyday life; To visualize conservation laws; To apply Lagrangian
	equation to solve complex problems.

At the end of the course, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion
	CO2	Acquire the knowledge on the conservation laws
COURSE OUTCOMES	CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non- conservative forces
	CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	2	3	3
CO2	3	3	3	2	3	2	3	3	3	2
CO3	3	3	3	3	3	3	2	3	2	3
CO4	2	3	3	3	2	3	3	2	3	3
CO5	3	3	2	3	3	2	3	3	3	2

COURSE	THIRD SEMESTER - COREPRACTICAL 3						
COURSETITLE	PRACTICAL 3						
CREDITS	3						
COURSE	Construct circuits to learn about the concept of electricity, current,						
OBJECTIVES	resistance in the path of current, different parameters that affect a						
	circuit. Set up experiments, observe, analyse and assimilate the concept						
	ELECTRICITY						
Minimum of Eigh	t Experiments from the list:						
1. Determinatio	n of refractive index of prism using spectrometer.						
2. Determinatio	n of refractive index of liquid using hollow prism and spectrometer						
3. Determinatio	n of dispersive power of a prism.						
4. Calibration o	f low range and high range voltmeter using potentiometer						
5. Calibration o	f ammeter using potentiometer.						
6. Measuremen	t of low resistances using potentiometer.						
7. Determinatio	n of field along the axis of a current carrying circular coil.						
8. Determination of earth's magnetic field using field along axis of current carrying							
coil.							
9. Determinatio	n of specific resistance of the material of the wire usingPO box.						
10. Determinatio	n of resistance and specific resistance using Carey Foster's bridge.						
11. Determinatio	n of internal resistance of a cell using potentiometer.						
12. Determinatio	n of specific conductance of an electrolyte.						
13. Determinatio	n of e.m.f of thermo couple using potentiometer						
14. Determination of capacitance using Desauty's bridge and B.G./Spot							
galvanometer/head phone.							
15. Determinatio	n of figure of merit of BG or spot galvanometer.						
16. Comparison	of EMF of two cells usingBG.						
17. Comparison	of capacitance using BG.						

COURSE	CO1	Apply the theoretical concepts in Electricity, Electromagnetism, Heat &Thermodynamics and Optics related experiments
	CO2	Draw the circuit diagram /experimental set up with tabular column/model graph andwrite the formula to calculate the required physical parameters.
OUTCOMES	CO3	Execute the technical skills in handling the equipment and observe the requiredmeasurements related to the experiment.
	CO4	Calculate the necessary parameters using the formula/graph and complete the recordwork
	CO5	Analyze the accuracy of the results obtained and compare it with the theoretical value.

MAPPING WITH PROGRAM OUT COMES:

	PO1		PO2	PO3		PO4		PO5	PO6	PO7
CO1	3	2	1	3	-	-	2	-	-	2
CO2	3	3	3	3	-	2	-	-	-	1
CO3	3	3	3	3	-	2	-	1	3	-
CO4	3	3	3	-	3	2	-	1	2	3
CO5	2	2	2	2	3	3	2	2	2	3

COURSE	FOURTH SEMESTER – CORE THEORY 4
COURSETITLE	OPTICS and LASER PHYSICS
CREDITS	4
COURSE	To provide an in-depth understanding of the basics of various
OBJECTIVES	phenomena in geometrical and wave optics; To explain the behavior of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life; To understand the design of anticel systems and methods to minimum characteristics.
	understand the working and applications of laser

At the end of the course, the student will be able to:

	CO1	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of evenieces
	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer
COURSE OUTCOMES	CO3	Extend the knowledge about nature of light through diffraction techniques; apply mathematical principles to analyse the optical instruments
	CO4	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries
	CO5	Relate the principles of optics to various fields of IR, Raman and
		application in industries

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	3	3	2	2
CO2	2	3	2	3	2	3	2	2	3	3
CO3	3	2	3	3	3	2	3	3	2	2
CO4	3	2	3	2	2	3	2	2	3	2
CO5	3	2	3	2	3	3	2	3	3	3

COURSE	FIFTH SEMESTER – CORE THEORY 3						
COURSETITLE	ELECTRICITY, MAGNETISM ANDELECTROMAGNETISM						
CREDITS	4						
COURSE	To classify materials based on their electrical and magnetic						
OBJECTIVES	properties. To analyse the working principles of electrical gadgets.						
	To understand the behaviour of dc, ac and transient currents. To						
	know about the communication by electromagnetic waves.						

At the end of the course, the student will be able to:

	CO1	Describe various thermo-electric effects and their properties.
	CO2	Apply Biot and Savart law to study the magnetic effect of electric current.
COURSE	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.
OUTCOMES	CO4	Analyze the time variation of current and potential difference in AC circuits.
	CO5	Relate different physical quantities used to explain magnetic properties of materials.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	3	2	3	3	3	2	2	3	2

COURSE	FIFTH SEMESTER - CORE
COURSE TITLE	ATOMIC and NUCLEAR PHYSICS
CREDITS	4
COURSE	To make students understand the development of atom models,
OBJECTIVES	quantum numbers, coupling schemes and analysis of magnetic
	moments of an electrons; To gain knowledge on excitation and
	ionization potentials, splitting of spectral lines in magnetic and
	electric fields; To get knowledge on radioactive decay; To know the
	concepts used in nuclear reaction; to understand the quark model of
	classification of elementary particles.

At the end of the course, the student will be able to:

	CO1	List the properties of electrons and positive rays, define
		specific charge of positive rays and know about different mass
		spectrographs.
	CO2	Outline photoelectric effect and the terms related to it, State
		laws of photoelectric emission, Explain experiments and
		applications of photo electric effect, Solve problems based on
COUDCE		photoelectric equation.
COURSE	CO3	Explain different atom models, Describe different quantum
OUTCOMES		numbers and different coupling schemes.
	CO4	Differentiate between excitation and ionization potentials,
		Explain Davis and Goucher's experiment, Apply selection rule,
		Analyse Paschen-Back effect, Compare Zeeman and Stark
		effect.
	CO5	Understand the condition for production of laser, Appreciate
		various properties and applications of lasers.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	3	3	2	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

COURSE	FIFTH SEMESTER – CORE					
COURSETITLE	ANALOG AND COMMUNICATION ELECTRONICS					
CREDITS	3					
COURSE	To study the design, working and applications of semiconducting					
OBJECTIVES	devices. To construct various electronic circuits. To study them in					
	details. To study the basis of audio and video communication					
	systems and the aspects of satellite and Fibre Optic					
	Communications.					

At the end of the course, the student will be able to:

	CO1	Explain the basic concepts of semiconductors devices.								
	CO2	know and classify the basic principles of biasing and transistor								
COUDSE		amplifiers								
OUTCOMES	CO3	Acquire the fundamental concepts of oscillators.								
OUTCOMES	CO4	Understand the working of operational amplifiers								
	CO5	Learn and analyze the operations of sequential and								
		combinational digital circuits								

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	3	3	2	3	2	2	3	2	2	2
CO3	2	2	3	1	3	3	1	3	3	3
CO4	2	3	3	3	3	3	3	2	1	2
CO5	3	2	3	3	2	2	3	2	2	3

COURSE	SIXTHSEMESTER – CORE
COURSETITLE	QUANTUM MECHANICS AND RELATIVITY
CREDITS	4
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyses to understand the solutions.

At the end of the course, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.
	CO2	Appreciate the importance of transformation equations and also the general theory of relativity
COURSE OUTCOMES	CO3	Realize the wave nature of matter and understand its importance
	CO4	Derive Schrodinger equation and also realize the use of operators.
	CO5	Apply Schrödinger equation to simple problems.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	3	3	2	3	2	2	3	2	2	2
CO3	2	2	3	2	3	3	2	3	3	3
CO4	2	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	2	2	3	2	2	3

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	SOLID STATE PHYSICS
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. To learn
	about the principles of various particle detectors and accelerators.
	To acquire knowledge on different types of nuclear reactions and
	their applications. To know the reason for cosmic rays and their
	effect on the surface of earth and also understand the classification of
	elementary particles.

At the end of the course, the student will be able to:

COURSE OUTCOMES	CO1	Classify the bonding and crystal structure also learn about the crystal structure analysis using X ray diffraction.
	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.
	CO3	Give reason for classifying magnetic material on the basis of their behavior.
	CO4	Comprehend the dielectric behavior of materials.
	CO5	Appreciate the ferroelectric and super conducting properties of materials.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	3	3	2	3	3
CO2	2	3	2	3	3	3	3	3	3	3
CO3	3	2	3	2	3	3	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3
CO5	3	2	2	3	3	2	3	3	3	3

COURSE	SIXTH SEMESTER – DISCIPLINE SPECIFIC ELECTIVE
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	3
COURSE	To learn all types of number systems, Boolean algebra and identities,
OBJECTIVES	digital circuits for addition and subtraction, flip-flops, registers,
	counters. To get the knowledge on fundamentals of 8085
	architecture, instruction sets and simple programs.

At the end of the course, the student will be able to:

	CO1	Learn about number systems, Boolean algebra, logical operation
COURCE	CO2	Understand the working of adder, subractors, multiplexers and
COURSE		DE multiplexers.
OUTCOMES	CO3	Get knowledge on flip-flops and storage devices.
	CO4	Gain inputs on architecture of microprocessor 8085.
	CO5	Develop program writing skills .on microprocessor 8085.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	3	3	2	3	3
CO2	2	3	2	3	2	2	3	2	2	2
CO3	3	2	3	2	3	2	2	3	3	3
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	2	3	3	2	3	2	2	3

COURSE	SIXTH SEMESTER – CORE PRACTICAL 3					
COURSETITLE	PRACTICAL -III					
CREDITS	3					
COURSE	Demonstrate various optical phenomena principles, working, apply with					
OBJECTIVES various materials and interpret the results.						
	GENERAL PRACTICAL- III					
Minimum of Eig	ht Experiments from the list:					
1. Spectromet	er-Grating - Normal incidence - Wave length of Mercury spectral lines.					
2. Spectromet	er – Grating - Minimum deviation - Wave length of Mercury spectral lines.					
3. Spectromet	er – (i-d) curve.					
4. Spectromet	er - (i - i') curve.					
5. Cachy's con	nstant					
6. Hartmann's	s constant					
7. Spot Galvar	nometer – Determination of mutual induction					
8. Spot Galva	nometer –Comparison of mutual induction					
9. Spot Galvar	nometer – High resistance by leakage					
10. Spot Galvar	nometer – Internal resistance of a cell					
11. Anderson's	bridge					
12. Maxwell's	bridge					
13. Rayleigh's	Bridge					
14. B.G – Figur	14. B.G – Figure of Merit – Charge Sensitivity					
15. LCR- Serie	15. LCR- Series Resonance Circuit					
16. LCR- Paral	16. LCR- Parallel Resonance Circuit					
17. Impedance	and Power factor- LR Circuit					
18. Impedance	and Power factor- CR Circuit					

At the end of the course, the student will be able to:

	CO1	Apply the theoretical concepts in Electromagnetism, Heat and Optics related experiments
COLIDSE	CO2	Draw/ arrangement for the circuit diagram /experimental set up with tabular column/modelgraph and write the appropriate formula to calculate the required physical parameters
OUTCOMES	CO3	Execute the technical skills in handling the equipment and observe the required measurements related to the experiment.
	CO4	Calculate the necessary parameters using the formula/graph and complete the recordwork.
	CO5	Analyze the accuracy of the results obtained and compare it with the theoretical value.

MAPPING WITH PROGRAM OUT COMES:

	P	01	PO2	P	03	P	04	PO5	PO6	PO7
CO1	3	3	1	3	-	-	2	-	-	2
CO2	3	3	3	3	-	2	-	-	-	1
CO3	3	3	3	3	-	2	-	1	3	-
CO4	3	3	3	-	3	2	-	1	2	3
CO5	2	3	2	3	3	3	2	2	2	3

COURSE	SIXTH SEMESTER – CORE PRACTICAL 4					
COURSETITLE	ANALOG ELECTRONICS PRACTICAL –IV					
CREDITS	3					
COURSE	To perform basic experiments on characteristics of electronic devices					
OBJECTIVES	and then get into the applications such as amplifiers, oscillators,					
	counters, multivibrators.					
	Electronics					
Minimum of Ten	Experiments from the list:					
1. Zener diode –	voltage regulations					
2. Bride rectifier	using diodes					
3. Clipping and	clamping circuits using diodes.					
4. Colpitt's oscil	llator -transistor.					
5. Hartley oscilla	5. Hartley oscillator - transistor.					
6. Astablemultiv	6. Astablemultivibrator - transistor.					
7. Bistablemulti	vibrator - transistor.					
8. FET - charact	eristics.					
9. UJT -characte	pristics					
10. Operational at	mplifier - inverting amplifier and summing.					
11. Operational an	mplifier - non-inverting amplifier and summing.					
12. Operational an	mplifier – differential amplifier					
13. Operational an	mplifier - differentiator and integrator.					
14. Study of gate	14. Study of gate ICs – NOT, OR, AND, NOR, NAND, XOR, XNOR					
15. Verification o	15. Verification of De Morgan's theorem using ICs –NOT, OR, AND					
16. NAND as universal building block.						
17. NOR as unive	ersal building block.					
18. Half adder / H	Ialf subtractor using basic logic gate ICs					

At the end of the course, the student will be able to:

	CO1	Describe the methodology of science and the relationship between Observation and theory.
Course Outcome	CO2	Learn to minimize contributing variables and recognize the limitations of equipment.
	CO3	Appreciate the applications of diodes, transistors and op- amps
	CO4	Troubleshoot any simple electronic circuits
	CO5	Report observations and analyses in a scientific manner

MAPPING WITH PROGRAM OUT COMES:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	2
CO2	3	3	1	1	2
CO3	1	2	2	2	2
CO4	3	3	3	2	1
CO5	1	2	3	2	1

COURSE	SIXTH SEMESTER – CORE PRACTICAL 5					
COURSETITLE	DIGITAL ELECTRONICS PRACTICAL -V					
CREDITS	3					
COURSE	To perform basic experiments on characteristics of electronic devices					
OBJECTIVES	and then get into the applications such as amplifiers, oscillators,					
	counters, multivibrators.					
	Electronics					
Minimum of Ten	Experiments from the list:					
1. Zener diode	– voltage regulations					
2. Bride rectifie	er using diodes					
3. Clipping and	l clamping circuits using diodes.					
4. Colpitt's osc	eillator -transistor.					
5. Hartley oscillator - transistor.						
6. Astablemultivibrator - transistor.						
7. Bistablemult	tivibrator - transistor.					
8. FET – chara	cteristics					
9. UJT –charac	eteristics					
10. Operational	amplifier - inverting amplifier and summing.					
11. Operational	amplifier - non-inverting amplifier and summing.					
12. Operational	amplifier – differential amplifier					
13. Operational	amplifier - differentiator and integrator.					
14. Study of gate	14. Study of gate ICs – NOT, OR, AND, NOR, NAND, XOR, XNOR					
15. Verification of De Morgan's theorem using ICs –NOT, OR, AND						
16. NAND as universal building block.						
17. NOR as univ	versal building block.					
18. Half adder /	Half subtractor using basic logic gate ICs					

At the end of the course, the student will be able to:

	CO1	Apply the theoretical concepts in digital electronics.
Course	CO2	Draw the circuit diagram /experimental set up with tabular column/model graph andwrite the formula to calculate the required physical parameters.
	CO3	Develop the technical skills in handling the equipment and components and observe therequired measurements related to the experiment.
	CO4	Verify the truth tables of the digital circuits and complete the record work. [K3]
	CO5	Analyze the accuracy of the results obtained and compare it with the theoretical value.

MAPPING WITH PROGRAM OUT COMES:

	PO	1	PO2	PO.	3	PC)4	PO5	PO6	PO7
CO1	3	3	1	3	-	-	2	-	-	2
CO2	3	3	3	3	-	2	-	-	-	1
CO3	3	3	3	3	-	2	-	1	3	-
CO4	3	3	3	-	3	2	-	1	2	3
CO5	2	3	2	3	3	3	2	2	2	3

MATHEMATICAL PHYSICS

Learning Objective: To understand higher mathematical concepts which are applied to solve problems in Physics and similar situations

COURSE OUTCOMES:

On the completion of the course the student will be able to

	CO1	Describe the mathematical basis of vectors and their
COURSE OUTCOMES	COI	application in
		Physics problems.
	CO2	Explain the concept of eigenvectors and eigenvalues
	02	and their physical
		Meaning.
	CO3	Demonstrate the application of tensors in physics
	CO4	Comprehend the theorems of complex analysis.
	COS	Describe the usefulness of Fourier series in solving
	CUS	problems associated
		With periodicity.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	3	3	2	2	1	
CO2	1	3	3	2	2	2	
CO3	3	2	3	2	2	1	
CO4	2	3	3	2	2	1	
CO5	2	3	3	-	2	2	

ENERGY PHYSICS

Learning Objective: The fundamentals of matrices and vector calculus learnt in earlier course will enable students to learn advanced topics and theorems. The special functions and applications of partial differential equations will be of use in research at a later stage.

COURSE OUTCOMES:

On the completion of the course the student will be able to

	CO1	Learn basic concepts of biomass energy conversion and working				
		principles of different bio-gas plants				
COUDCE	CO2	Learn basic concepts of wind energy conversion and				
COURSE		principles of				
OUTCOME		Different wind energy conversion systems.				
	CO3	Gain an understanding of the Biomass conversion				
		Technologies				
	CO4	Explain the basic principles behind the energy generation in				
		the wind.				
	CO5	Learn basic concepts of wind energy conversion and				
		principles of				
		Different wind energy conversion systems.				

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	3	2	1	2	3
CO2	2	3	-	2	L	-
CO3	-	-	2	3	3	3
CO4	2	2	3	3	-	-
CO5	1	2	3	2	1	-

PROGRAMMING IN C

Learning Objective: To understand the methods in numerical differentiation and integration and to develop the problem solving skills of the student. To introduce and explain the basic structure, rules of compiling and execution of C programming.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE OUTCOME	CO1	Comprehend the use of numerical methods in solving physics problems				
	CO2	Realize the various methods in numerical integration				
	CO3	Recognize the basic concepts of C language				
	CO4	Hear and relate the basic concepts of C language				
	COS	Learn the role of functions, arrays, pointers and				
	05	programming structures of C				

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	3	3	2
CO2	2	3	3	3	2	1
CO3	1	3	3	3	2	1
CO4	1	3	3	3	2	1
CO5	1	3	3	3	2	2

MATERIALS SCIENCE

Learning Objective: To learn imperfections in crystals, deformation of materials and testing of materials. To get knowledge on behavior of a material, under the action of light and their applications. To know the applications of crystal defects.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Acquire the knowledge about the fundamentals of
		crystal physics, seven Crystal systems and their
		symmetry in detail.
	CO2	Understand the principles of X-ray diffraction and the
		methods
		available, various imperfections in crystals
Course	CO3	Gain a complete idea about superconductors ,theories
Outcome		involved in
		superconductivity and its applications
	CO4	Interpret the dielectric and ferroelectric materials,
		different types of
		electric polarization
	CO5	Appreciate the novel optical materials, their
		applications in display
		Devices, optical modulators.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	2
CO2	2	3	2	3	2	2
CO3	3	3	-	2	3	2
CO4	2	3	3	2	2	2
CO5	3	3	-	2	2	3

COMMUNICATION PHYSICS

Learning Objective: The students will learn the fundamentals of communication, types of communications, communication instrumentation and their applications also the inter connect between optics with communication.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Impart knowledge on the introduction to optical
		communication
COURSE	CO2	Understand the classification and frequency
OUTCOME		radiation loss
	CO3	Appreciate the applications of optical
		communication
	CO4	Compare the optical communication properties
		with the electrical communication properties
	CO5	Classify the types optical communication

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	-	1	2	3
CO2	2	3	-	1	2	2
CO3	2	3	2	1	2	3
CO4	2	3	2	1	2	1
CO5	3	3	-	1	2	3

NANOSCIENCE AND NANO TECHNOLOGY

Learning Objective: This course aims to provide an overall understanding of Nano science and Nanotechnology and introduces different types of nanomaterial, their properties, fabrication methods, characterization techniques and a range of applications.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

On the completion of the course the student will be able to

	Course Outcome
CO1	Comprehend the theoretical and experimental aspects of quantum wells, wires and dots
CO2	Understood the principles and Characterization techniques
CO3	Interpret the knowledge of a free electrons, confined electrons, quantum well, quantum transport and tunneling effects.
CO4	Grasp the principles, fabrication and design of Carbon Nano-Tubes
CO5	Understand and improved the applications of CNT

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3		-
CO2	2	3	3	2	-	3
CO3	3	3	3	2	-	1
CO4	2	2	3	3	1	3
CO5	2	3	3	3	1	3

ELECTRICAL WIRING

Learning Objective: This course aims to provide background of the Physics principles in instrumentation technologies through theoretical and practical learning.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

#	Course Outcome
CO1	Realize the basic concepts of Electronics
CO2	Understand the characteristics PN junction diode and their applications
CO3	Demonstrating the applications of Diode
CO4	Realize the basics of concepts of transistor biasing
CO5	Comprehend the basic concepts of Field effect Transistor

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	3	2	2
CO2	3	3	1	1	3	-
CO3	3	2	1	2	2	3
CO4	2	3	3	3	1	3
CO5	2	1	3	2	1	3

NON MAJOR ELECTIVES (NME)

PHYSICS FOR EVERYDAY LIFE

Learning Objective: To know where all physics principles have been put to use in daily life and appreciate the concepts with a better understanding also to know about Indian scientists who have made significant contributions to Physics

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	Course Outcome
CO1	Acquire the knowledge of the Principles involved in various appliances viz., electric fan, air conditioner and their working in detail
CO2	Understand the basic physics principles behind Refrigerator, washing machine, etc. and their working in detail
CO3	Acquire the information modern cooking electrical devices
CO4	Comprehend the principles of devices/media used in communication systems.
CO5	Realize the working of various device in the communication systems.

MAPPING WITH PROGRAM OUT COMES:

#	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	3	2	1
CO2	-	2	2	3	2	-
CO3	1	3	3	3	3	3
CO4	2	2	3	2	-	-
CO5	2	3	1	-	-	1

SPACE PHYSICS

Learning Objective: This course intends to introduce principles of astrophysics describing the science of formation and evolution of stars and interpretation of various heavenly phenomena and provide an understanding of the physical nature of celestial bodies along with the instrumentation and techniques used in astronomical research

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	Course Outcome							
CO1	Describe the properties of sun, chemical composition of stars,							
	cosmological models, galaxies and astronomical instruments.							
CO2	Understand the physical process that governs the universe, its constituents, and							
	their origin using different theories							
CO3	Discuss the structure of sun, star, galaxy and various astronomical instruments.							
CO4	Apply relevant theories to unravel the properties of astronomical matters.							
CO5	Infer the facts about perception of universe							

MAPPING WITH PROGRAM OUT COMES:

	PO1		PO2 PO3		PO4		PO5	PO6	PO7	
CO1	3	-			-	-	1	-	-	2
CO2	3	-	3			2	-	-	-	-
CO3	3	1	3	3	2	2	-	2	-	-
CO4	3	-	2	1	2	3	-	3	-	-
CO5	3	-	1	2	-	2	-	3	-	-

BIO MEDICAL INSTRUMENTS

Learning Objective: The students will be exposed to instruments like ECG, EEG, EMG, medical imaging, diagnostic specialties, operation theater and its safety which will kindle interest to specialize in instrument servicing.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	Course Outcome
CO1	Understand the elementary concepts of blood pressure
CO2	Learn basic concepts of clinical thermometer
CO3	Learn the Physics of hearing and its application in hearing aid.
CO4	Explain the theory of transducers and their Bio-medical applications,
CO5	Gain an understanding on Radiation therapy and Nuclear Cardiogram.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	3	2	1	1
CO2	3	3	-	2	3	-
CO3	3	1	2	-	-	3
CO4	1	2	2	3	-	3
CO5	1	1	3	1	2	-

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS – I
CREDITS	3
COURSE	To impart basic principles of Physics that which would be helpful for
OBJECTIVES	students who have taken programmes other than Physics.

At the end of the course, the student will be able to:

	CO1	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications in medical field.
	CO2	Explain their knowledge of understanding about materials and their behaviors and apply it to various situations in laboratory and real life. Connect droplet theory with Corona transmission.
COURSE	CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of flow temperature physics in the back ground of growth of this technology.
OUTCOMES	CO4	Articulate the knowledge about electric current resistance, capacitance in terms of potential electric field and electric correlatetheconnectionbetweenelectricfieldandmagneticfield andanalyzethemmathematicallyverifycircuitsandapplythecon cepts to construct circuits and study them.
	CO5	Interpret the real life solutions using AND, OR, NOT basic logic gates and in tend their ideas to universal building blocks. InferoperationsusingBooleanalgebraandacquireelementaryid easofICcircuits.Acquire information about various Govt. programs/ institutions in this field.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	2	3	3	3	2	3	3	3	3	2
CO3	2	3	3	3	3	2	3	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	2	3	3	3	3	3	3	3	3	3

COURSE	ODD SEMESTER - CORE						
COURSETITLE	ALLIED PRACTICAL-I						
CREDITS	3						
COURSE	Apply various physics concepts to understand Properties of Matter						
OBJECTIVES	and waves, set up experimentation to verify theories, quantify and						
	analyse, able to do error analysis and correlate results						
Minimum of Eigh	t Experiments from the list:						
1. Young's modu	llus by non-uniform bending using pin and microscope						
2. Young's modu	lus by non-uniform bending using optic lever, scale and telescope						
3. Rigidity modu	lus by static torsion method.						
4. Rigidity modu	4. Rigidity modulus by torsional oscillations without mass						
2. Surface tension	n and interfacial Surface tension – drop weight method						
3. Comparison of	f viscosities of two liquids – burette method						
4. Specific heat c	4. Specific heat capacity of a liquid – half time correction						
5. Verification of	5. Verification of laws of transverse vibrations using sonometer						
6. Calibration of	5. Calibration of low range voltmeter using potentiometer						
7. Determination	. Determination of thermo emf using potentiometer						
8. Verification of	Verification of truth tables of basic logic gates using ICs						
9. Verification of	. Verification of De Morgan's theorems using logic gate ICs.						
10. Use of NAND	10. Use of NAND as universal building block.						
<i>Note</i> : Use of digital balance permitted							

At the end of the course, the student will be able to:

	Course Outcomes							
CO1	Describe the methodology of science and the relationship between observation and theory.							
CO2	Develop the skill of performing experiments accurately							
CO3	Appreciate the applications of diodes, transistors and op-amps							
CO4	Troubleshoot simple electronic circuits							
CO5	Report observations and analyses in a scientific manner							

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	-	2	3	1
CO2	-	3	2	3	3	-
CO3	2	-	1	3	3	1
CO4	3	3	-	2	3	2
CO5	1	2	3	2	1	3

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS –II
CREDITS	3
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantum physics, semiconductor physics, and electronics.

At the end of the course, the student will be able to:

		Explain the concepts of interference diffraction using principles of					
	CO1	superposition of waves and rephrase the concept of polarization based					
		superposition of waves and replicase the concept of polarization based					
COURSEO UTCOMES							
	CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance of interpreting improving theoretical models based on observation. Appre ciate interdisciplinary nature of science and in solar energy related applications.					
	CO3	Summarize the properties of nuclei, nuclear forces structure of atom nucleus and nuclear models. Solve problems on delay rate half-lin and mean-life. Interpret nuclear processes like fission and fusion Understand the importance of nuclear energy, safety measures carrie and get our Govt. agencies like DAE guiding the country in the nuclear field					
	CO4	To describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation. Extend their knowledge on concepts of relativity and vice versa. Relate this with current research in this field and get an overview of research projects of National and International importance, like LIGO, ICTS, and opportunities available.					
	CO5	Summarize the working of semiconductor devices like junction diode, Zener diode, transistors and practical devices we daily use like USB chargers and EV charging stations.					

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	2	3	3	3	2	3	3	3	3	2
CO3	2	3	3	3	3	2	3	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	2	3	3	3	3	3	3	3	3	3