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RETRIAL QUEUE IN A SERVICE FACILITY SYSTEM -

MARKOV DECISION MODELS

SYNOPSIS

Introduction

The Markov decision model is a versatile and powerful tool for analyzing probabilis-

tic sequential decision process with an finite/ infinite planning horizon. The models

in this thesis are an outgrowth of the Markov model and dynamic programming. The

basic ideas of dynamic programming are states, the principle of optimality and func-

tional equations.Research on Markov Decision Process has expanded at a fast rate

and a powerful technology has been developed. However, in that period, relatively

little effort was put into applying the quite useful Markov decision model to practical

problems. The Markov decision model has many potential applications in inventory

control, maintenance, manufacturing, computer network and tele-communication

among others.

Literature review

Berman, O., et al. (1993)[7] analyzed a deterministic system where inventory is

depleted at the demand rate when there is no queue and at the service rate when

customers are awaiting service. Under this scenario, queues can build up only when

there is a stock-out situation. Berman, O. and Kim, E., (1998, 1999)[8, 9] devel-

oped two Markovian models for the zero leadtime and positive leadtime cases. They

determined optimal ordering policies for the discounted cost and the average cost

criteria. For a given policy, Berman, O. and Sapna, K.P., (1998)[10] analyzed the

problem in a non-Markovian environment under the assumption of zero leadtime.

The objective was to determine the optimal stocking level in terms of the various

system parameters. Berman, O. and Sapna, K. P., (1998)[11] addressed the prob-

lem of finding the optimal stocking and reorder levels that minimize the long-run
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expected cost rate under a prespecfied cost structure for a completely Markovian

system with positive leadtime.

Berman, O., et al. (1993)[7], Berman, O. and Kim, E., (1998, 1999)[8, 9] &

Berman, O. and Sapna, K. P., (1998)[11] deal with the problem of determining

ordering policies or determining the optimal reorder and maximum inventory levels.

However, there are practical situations where it is possible to control the service

rates in order to cope up with the random fluctuations in demand or the formation

of unmanageably long queues at the service facility. The dynamic control of service

rates gives the system manager great flexibility in coping with the uncertainty in

future demands.

An implicit assumption in most lost sales inventory models is that inventory is

depleted at a rate equal to the demand rate. Though this assumption is realistic

for production / manufacturing industries, it becomes unrealistic for the service

facilities where inventory is necessary to perform the service. Inventory is depleted

according to the demand rate when there are no customers waiting and according

to the service rate when there are customers queued up for service. Examples where

inventory is used in the provision of service include installing bumpers at car service

stations, hospitals where units of blood are necessary for surgery and serving apple

pies at restaurants.

Berman,O., Kaplan, E.H. and Shimshak, D.G., (1993)[7] considered an inventory

control problem at a service facility which uses one item of inventory for each service

provided. They assumed that both the demand and service rates are deterministic

and constant and as such queues can form only during stock outs. They determined

the optimal order quantity Q that minimizes the total cost rate.

Berman, O. and Kim, E., (1999)[9] analyzed the problem in a stochastic envi-

ronment where customers arrive at service facilities according to a Poisson process

and service times are exponentially distributed with mean inter-arrival time greater

than the mean service time. Just as it is assumed that each service requires exactly

one item from inventory. The first paper deals with the case of zero leadtime and the
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second one deal; with the case of positive leadtime. The main result of the papers

is that under both the discounted cost case and the average cost case, the optimal

policy of both the finite and infinite time horizon problems is a threshold ordering

policy. The optimal policies are derived given that the order quantity is known.

Queuing systems with retrials, in which customers repeat attempts to obtain

service, was originally a topic of telecommunications research. More recently, these

systems have served as models for particular computer networks, which may explain

the current level of activity on the subject. As an example, the “customers” of this

queue could be a network of computers attempting to access the same database,

which may only be used by one customer at a time.

In last two decades, many researchers in the field of retrial queuing system,

contributed many results. For example, Elcan, A., (1999)[20], Arivudainambi, D.,

et Al. (2009)[1], Dragieva, V.I., (2013)[17], Dudin, A. N., et al.(2015a)[18] and

Artalejo, J.R., et al. (2000)[6] discussed a single server retrial queue with returning

customers examined by balking or Bernoulli vacations and derived analytic solutions

using Matrix or Generating function or Truncation, methods using level dependent

quasi-birth-and-death process (LDQBD).

Paul, M., et al. (2007)[27] and Krishnamoorthy, A., et al. (2005, 2007)[24,

25] analyzed a continuous review inventory system at a service facility with retrial

of customers. In all these systems, arrival of customers form a Poisson process

and service and retrial times are independent and exponentially distributed. They

investigate the systems to compute performance measures and construct suitable

cost functions for the optimization purpose.

For detailed survey one can see Yang, T. and Templeton, J. G. C., (1987)[30]

and Falin, G.I., (1990)[21]. Choi, B. D. and Park, K. K., (1990)[13] investigated an

M/G/1 retrial queue with two types of customers in which the service time distri-

bution for both types of customers are the same. Khailal, Z., et al. (1992)[23] inves-

tigated the above model at Markovian level in detail. Falin, G. I., et al.(1993)[22]

investigated a similar model, in which they assumed different service time distri-
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butions for both types of customers. In 1995, Choi, B. D., et al. [14] studied an

M/G/1 retrial queueing with two types of customers and finite capacity. Choi, B.

D. and Chang, Y., (1999)[12] investigated, Single server retrial queue, with two type

of recurrent calls in the retrial group, in which they obtained generating function of

queue lengths by using supplementary variable technique.

In 2000, Artalejo and Lopez- Herrero are concerned with the M/G/1 retrial queue

with balking. The ergodicity condition is first investigated making use of classical

mean and the limiting distribution of the number of customers in the system is

determined with the help of a recursive approach based on the theory of regenerative

processes. Many closed form expression are obtained when we reduce to the M/M/1

queue for some representative balking policies.

Artalejo, Rajagobalan and Sivasamy, (2000), are deals with the stochastic mod-

eling of a wide class of finite retrial queueing systems in a Markovian environment.

Using Matrix method they obtained the stationary distribution and first passage

times.

Research Methodology

Most of the models in MDP problems are taken up for indepth study using the tools:

(i) LPP method

(ii) Policy-iteration method and

(iii) Value-iteration method

(i) Linear Programming Approach

In this thesis, MDP problems are taken up for indepth study using LPP method.

Consider the objective function f(x) as maximization of profit or minimization of

cost, subject to the constraints involving all decision variables and quantity of re-

sources will give the LPP formulation. Solving the problem by the standard Simplex
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method, We get optimal solution for the MDP problem.

(ii) Policy-Iteration

The policy-iteration algorithm converges after finite number of iterations to an

average cost optimal policy. The policy-iteration algorithm is empirically found to

be a remarkably robust algorithm that converges very fast in specific problems.

(iii) Value-Iteration

The value-iteration algorithm computes recursively a sequence of value functions

approximating the minimal average cost per time unit. The value functions provide

lower and upper bounds on the minimal average cost and under a certain aperiodicity

condition these bounds converge to the minimal average cost.

Organization of the Thesis

The organization of the thesis is as follows:

Chapter 1, introduces the subject matter for research and the motivation for

selection of problem. Review of literature on the topic and the related references

and research objectives are also given in two sections.

Chapter 2 gives briefly the Basic concepts on Markov Decision Process, inventory

control system, queueing system and Retrial queueing systems.

In chapter 3, control of service rate in a service facility system with Retrial

Demands. Linear Programming method is used to control the Optimum service

rates in service facility system.

In chapter 4, deals a service control in a service facility system with inventory

maintenance and retrial demands using semi-MDP. The Optimum control policy to

be employed is found using LPP method so that the Long-run expected cost rate is

minimized.

In chapter 5, we discus service control problem in service facility with two types of

customer-semi MDP. LPP method has been used to get the optimum ordering policy

for perishable items in retrial service facility with instantaneous replenishment.
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In chapter 6, a finite source Retrial queue with inventory management -semi

MDP.Linear Programming method and Policy iteration methods are used to find

the Optimum inventory policy in service facility system.

Conclusion & Scope for Future Work

Conclusion

This thesis deals with Analysis of inventory ordering control in a service facility

system with retrial as a MDP is fairly recent system study. Most of the previous work

determined optimal ordering policies or system performance measures. We newly

introduce MDP formulation in retrial queueing system for maintaining inventory.

In this research work we approach the problem to control the ordering policy (rule)

via the long - run average cost criterion. We determine the optimum ordering policy

to be employed to minimize the long-run expected cost rate. Thus the optimal

ordering control in a continuous time semi Markov process based service facility

is established.Various system performance measures are derived and the long-run

expected cost rate is calculated. By assuming a suitable cost structure on the

inventory system, we have presented extensive numerical illustrations to show the

effect of change of values on the total expected cost rate.

Scope for Future Work

It is proposed to formulate models with more realistic assumptions which may lead us

to consider advanced stochastic processes for the various behaviors of the inventory

system. it is also proposed to carry out simulation studies on the models studied in

the thesis when analytical solutions is lacking. In future, to get more insight into the

performance of the supply chain systems, the stochastic modeling in Supply Chain

has to go a long way.
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